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Abstract 

This research presents a mathematical model for understanding the dynamics of typhoid fever, 
incorporating age structure, vaccination, and treatment effects. The model captures the 
complexities of typhoid transmission by considering different age groups, which exhibit varying 
susceptibility and contact rates. The homotopy perturbation method is applied to solve the 
system of differential equations governing the disease dynamics. The model explores the impact 
of vaccination programs, treatment interventions, and age-specific factors on reducing 
transmission rates and controlling outbreaks. Sensitivity analysis is performed to identify key 
parameters that influence disease progression, including the basic reproduction number    .  . The 
results highlight the importance of targeting vaccination and treatment strategies toward specific 
age groups to enhance intervention efficacy. Numerical simulations demonstrate that increasing 
vaccination coverage and treatment rates significantly reduce the spread of typhoid fever. The 
findings provide valuable insights for optimizing public health policies aimed at managing 
typhoid fever, particularly in regions with limited resources. This approach offers a robust 
framework for assessing the effectiveness of control measures and improving disease 
management. 

Keywords: Typhoid outbreaks, Age-structure, Basic reproduction number. Homotopy 

perturbation method, Sensitivity analysis. 

ORIGINAL RESEARCH 

1. Introduction 

Mathematical modeling is a crucial tool for 
understanding the transmission dynamics of 
infectious diseases like typhoid fever, a 
bacterial infection caused by salmonella typhi 
typhoid fever is a public health concern in 
areas with poor sanitation and contaminated 
water, with symptoms such as high fever, 
abdominal pain, and gastrointestinal distress. If 
left untreated, it can lead to severe 
complications or death (Keshav et al., 2019). 
Recent advancements in modeling have 

incorporated factors such as age structure, 
vaccination, and treatment effects. The 
homotopy perturbation method has been 
particularly effective in solving differential 
equations that describe disease dynamics 
(Bwalya et al., 2022). Including age 
structure allows models to more accurately 
capture the transmission patterns and the 
effectiveness of interventions like 
vaccination in different demographic groups 
(Dougan and Baker 2014). Vaccination and 
treatment are key components in controlling 
typhoid fever. 
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Vaccination reduces the susceptible population,
while treatment helps alleviate symptoms and
prevent complications. Modeling these
interventions helps researchers evaluate the
effectiveness of control measures and optimize
strategies (Amouch and Karan 2023). Children
are especially vulnerable to severe illness and
mortality from typhoid fever, and they can serve
as reservoirs for transmission. Population
dynamics, including factors like migration and
urbanization, also affect the spread of the disease.
Models that incorporate these factors provide
insights into the long-term trends of disease
transmission (Kolawole et al,, 2022, Kuehn et al,
2022). Overall, mathematical models combining
epidemiological data, age-specific factors, and
interventions provide valuable insights into
typhoid fever dynamics. These models aid in
evidence-based decision-making, contributing to
the effective control of typhoid fever and other
infectious diseases (Liu, 2023). Efforts to control
typhoid outbreaks typically involve a
combination of preventive and responsive
measures aimed at interrupting the transmission
of the bacterium and treating infected
individuals. Water and sanitation interventions
play a crucial role in preventing cholera
transmission and reducing the burden of the
disease. Recent control measures for Typhoid
include (Masuet and Atouguia, 2021, Melnikov
et al., 2023). Improved Water and Sanitation
Infrastructure: Investing in infrastructure for
clean water supply, sanitation facilities, and
proper waste management is fundamental in
preventing typhoid outbreaks. Providing access
to safe drinking water and promoting hygienic
practices, such as hand washing and proper food
handling, can significantly reduce the risk of
Typhoid transmission. Vaccination Campaigns
oral typhis vaccines (OCVs) have been
developed and deployed in Typhoid-endemic
areas as part of targeted vaccination campaigns.
OCVs can provide short to medium-term
protection against Typhoid and are often used in
outbreak response efforts and in areas with a
high risk of Typhoid transmission (Muchmore et
al., 2020, Muscat et al., 2022). Surveillance and
early detection: Strengthening surveillance
systems for Typhoid and enhancing early

detection and response mechanisms are critical
for containing outbreaks and preventing the
spread of the disease. Rapid diagnostic tests,
along with effective reporting and monitoring
systems, enable health authorities to identify and
respond to Typhoid cases promptly
(Muthuirulandisethuvel et al., 2020). Health
education and community engagement in
promoting awareness about typhoid transmission,
symptoms, and preventive measures through
health education campaigns can empower
communities to take proactive steps in
preventing the disease. Engaging with
community leaders and stakeholders fosters
community participation and ownership of
typhoid control efforts, leading to sustainable
outcomes. Treatment and case management.
Providing prompt and appropriate treatment for
typhoid cases is essential for reducing morbidity
and mortality associated with the disease, along
with the administration of antibiotics in severe
cases. Ensuring access to healthcare facilities
equipped to manage Typhoid cases helps prevent
complications and reduce the spread of the
disease (Lawal et al., 2023). Integrated
Approach: Implementing a multi-sectorial and
integrated approach to Typhoid control,
involving collaboration between health
authorities, water and sanitation agencies, non-
governmental organizations, and other
stakeholders, is essential for addressing the
complex determinants of cholera transmission.
Coordinated efforts across various sectors can
maximize the impact of control measures and
contribute to sustainable Typhoid prevention and
control strategies (Kolawole et al., 2023).

2. Formulation of the model
We develop a model with Bacteria population,
NB denoted by B(t) and human population, NH.
The populations are subdivided into different
epidemiological classes: Susceptible of the
children (SC), Susceptible of the adult (SA),
vaccination (V), Infected (I), Treatment (T),
Recovered (R), and bacteria subclasses. The
models assumes that human population will be
recruited to susceptible compartment of the
children at the rate ,C and susceptible



Mathematical Modeling of Typhoid Dynamics with Age Structure, Vaccination, and Treatment …

KOLAWOLE and AYOOLA (2025)

715
compartment of the adult at the rate ,A and
susceptible individuals are infected at the rate of

Bk
B

 where  is the rate of salmonella Typhi

injections in foods and drinks
Bk

B


is the

probability of probability of individuals in
consuming foods or drinks contaminated with
typhoid causing bacteria. All human population
have their natural death at the rate , and
infected individuals die from typhoid at the rate

, The treatment rate of infected individual
infant is represented by , excretion of
Salmonella Typhi bacteria by the infected
children and adult to the environment at the rate
 and salmonella Typhi will die to the
environment at the rate , the parameter
 represent hygiene rate, 21 , denote
vaccination rate of children and adult, while

21 ,  represents waning rate of immunity. The
below diagram in figure (1) represent the model
flow chart.

Figure 1. Schematic flow of the model formulation
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Table 1. Description of parameters
Variables Definitions
SC(t) The number of susceptible individual children
SA(t) The number of susceptible adult individual
V(t) The number of vaccinated individual
I(t) The number of infected individual
T(t) The number of Treated individual
R(t) The number of Recovered individual
B(t) The number of Bacteria in the population
Parameter Parameter descriptions Value References
W Hygiene rate 0.3 Kuehn et al.(2022)
ẟ Disease induced death rate 0.015 Kolawole et al.(2023)

21 , Waning rate of immunity 0.0186821 Lawal et al. (2023)
µ Natural death rate 1/60,000 Keshav et al. (2019)
 Excretion rate of salmonella Typhoid 0.003 Kolawole et al. (2022)
 Treatment rate of individuals 0.00174478 Muchmore et al. (2020)
 Recovery rate of treatment individuals 0.00331428 Bwalya et al. (2022)

21 , Vaccination rate of Children and Adult 0.0002 Komarovkaya et al. (2023)
G Rate at which children become adult 0.01 Assumed
K Concentration of salmonella bacteria in

foods and water.
50,000 Assumed

 The rate of salmonella Typhi injections in
foods and drinks

10 Dougan and Baker, 2014

AC  , Recruitment rate of children and adult 150,000.1854 Muscat et al.(2022)
 The rate at which salmonella Typhi will die

to the environment
0.001 Assumed

A compartmental based model for analysing the
treatment of typhoid fever capturing age
structure and vaccine. The govern model is
given by the system of non-linear ordinary
differential equations below.

Initial model
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Formulated model

The equation (1) of Halson et, al. (2021) was
extended by incorporating the following novelty,
Age structure, Vaccine and Treatment. The

model equation is therefore given in equation (2)
inclusive of the above parameters. Hence we have:
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3. Analysis of the model
3.1. Existence and uniqueness of model solution

Feasible Region: The analysis of the feasible was done, in which the model solution is bounded. The
total human population (NH) considered in above model are

NH = (Sc +SA+V+I+T+R),
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dt
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is positive invariant. Therefore, the model is well posed epidemiologically and mathematically. Hence,
it is sufficient to study the dynamics of the basic model in .
3.2. Positivity and boundedness of model solution

The initial condition of the model was assumed to be non-negative and now, we also proof that the
solution of the model is positive.

Theorem 1

Let = 0,0,0,0,0,0,0;),,,,,,( 0000000
7  BRTISSRBRTISS ACAC 

Then the solution of  BRTISS AC ,,,,,,  are positive for t  0

Proof

From the system of differential equation, we
solve the equation one after the other.
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This completes the proof of the theorem, and it
shows that the solution of the model is positive.

3.3. Existence of disease free equilibrium
state

To analyse the disease free-equilibrium we let
the right hand side of the model (2) to zero,
evaluating it
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3.4. Endemic equilibrium point
We represent our endemic equilibrium point as ),,,,,,(  BRTIVSSE AC ,

Theorem 2
There exists a unique equilibrium of system of when 10 R
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Proof:
To prove this theorem, we equate the right-hand side of the system to zero and substitute SC, SA, V, I,
T, R, B with  BRTIVSS AC ,,,,,, , respectively, to get
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From the last equation of system (19) we have
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3.5. Basic reproduction number *R

There are two diseases state but only one way
to create new infections. Hence exposed and
infected compartments of the model are
involved in the calculation of *R .
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F is the new infections, while the V are transfers
of infections from one compartment to another.
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Let
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3.6. Local stability of disease free equilibrium

The disease-free equilibrium is locally
asymptotically stable if the basic reproduction
number. 1* R .

The characteristic polynomial of the Jacobian
matrix of disease-free equilibrium is given by

0||  IJ iE  where is the Eigen value and I is the
identity matrix. The Stability criterion of Disease
Free Equilibrium, the general Jacobian matrix has
been calculated as obtained;

The local stability of the disease free equilibrium
of the Jacobian matrix of the system of (2),
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By using Atangana Belame invariance principle by lower triangular matrix.

We obtain, therefore,
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Since all the eigen values are all negative, hence the disease free equilibrium is locally asymptotically
stable.

3.7. Local stability of endemic equilibrium
The Endemic equilibrium of the proposed Epidemic model is locally asymptotically stable if 1* R
and unstable otherwise if 1* R

We linearized each of the compartment by let









BzBRyR

TxTIeIVcVSbSSaS AACC

,

,,,,, (27)



Mathematical Modeling of Typhoid Dynamics with Age Structure, Vaccination, and Treatment …

KOLAWOLE and AYOOLA (2025)

723
From the system of equation (27), we obtain
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Then we differentiate each compartment one by one and take the Jacobian-Matrix.
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The Characteristics polynomial is given by

7
1

6
2

5
3

4
4

3
5

2
6

1
7 aaaaaaa    (32)

Applying the Routh-Hurwitz criterion, it can be seen that all the eigen values of the characteristics
equation above have negative real part. Then the endemic equilibrium is locally asymptotically stable.

3.8. Global stability of disease free equilibrium
At equilibrium where 321 ,, CCC are constants, the global stability for the disease free equilibrium is

stable if 1* R unless otherwise. Consider the Lyapunov approach on the disease class deduced as;
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Using Lyapunov function approach to proceed for the result for global asymptotic stability of the
proposed model at disease free equilibrium state.

Let V (t, SC, SA, V, I, Q, R, B), on the disease state, the derivatives of the respective state variables is
deduced as:
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It is important to note that V=0, only when I=0, the substitution of I=0 into the model system of
equation (3) shows that
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at t→∞, w<1 and based

on Lasalle’s invariance principle, Hence 00 E is Globally Asymptotically stable whenever 1* R

3.9. Global stability analysis for endemic equilibrium point
By employing Dulac criterion to proceed for the result for global asymptotic stability of modified model.

Let X= (SC, SA, V, I, T, R, B), where
ACSS

XG 1)(  (38)
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Now we consider the parameter with and without state variables i.e those parameter without are
negative invariant as those with states variables are neglected not relevance to ACSS
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Hence the orbit of the region is epidemiologically stable at 1* R such that perseverance of the disease

reduces and controlled at 1t .

3.9.1. Sensitivity analysis of 0R
The robustness of the model predictions with respect to parameter values and also to detect parameters
that mostly impact on 0R . To study the behaviour of a relative change in a variable with respect to
changes in a parameter. In order to measure the impact of the model parameters. The sensitivity index
analysis using normalized sensitivity is obtained as;
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Table 2. Sensitivity index of 0R

Description Parameter
Sensitivity
indices

Waning rate of immunity 21 ,  0.63663
Excretion rate of salmonella typhoid  1.82363
Concentration of salmonella bacteria infection in fluids and water 21 , 0.06253
Rate at which children becomes adult G -1.71212
Death rate  0.08273
Rate at which salmonella typhi will die to the environment v 0.00263
Disease induced death  0.01263
Hygiene rate w 1.20826
Treatment rate  1.23627
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The table above shows the sensitivity index value of model parameters. The positive values in the above
table describes or show the non-prevalence of the virus increases. They contribute in decreasing the
value of basic reproduction number *R

4. Numerical simulation
In this section, we apply the homotopy perturbation method to obtain an approximate solution for the
Typhoid model (1) by constructing the following correctional functional
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We can assume the following power series of p as solution for the model variables in (44) such that
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Evaluating (44) using (45) and subsequently collecting coefficients of powers of p , for 1n yields
the following system
At 0n , coefficients of 0p are:
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At 1n , coefficients of 1p are:
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Also at 2n , coefficients of 2p are:
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(48)

And so on. Solving system (3) using the initial conditions
              0000000 0,0,0,0,0,0,0 bbrriivvssss aacc   ,

Also, evaluating (48) using the initial conditions the following results are obtained for the first
approximations
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the second approximate solution is obtained:
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Summing these results up gives the approximate series solution of the system given by
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5. Result
In this section, we conduct a numerical evaluation of the model results and discuss the convergence of
the obtained solution. Utilizing the base line parameter values outlined below

Figures 2. Impact of children vaccination on model variables
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Figures 3. Impact of children vaccination on model variables

Figures 4. Impact of children vaccination on model variables
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Figures 5: Impact of children vaccination on model variables

Figures 6. Impact of children vaccination on model variables

6. Discussion
The presented Figs. provide a comprehensive
insight into the dynamics of a Typhoid model,
focusing on the impact of vaccination rates,
waning immunity, and hygiene on the
susceptible adult population  tS A , susceptible

children population  tSC , and the vaccinated

population  tV .

Vaccination Rates and Population Dynamics
(Figs. 2 and 3): Figs. 2 and 3 highlight the
influence of vaccination rates on the various
population groups. In both cases, the susceptible
adult and children populations increase as the
vaccination rate of children 1 rises. This
suggests that increasing the vaccination rate for
children has a positive correlation with the

susceptibility of both adult and child populations.
Moreover, Figs. 2 demonstrate that the rise in the
vaccination rate of adults ( 2 ) results in a faster
increase in susceptibility for both adult and child
populations compared to the effects of 1 . This
underscores the importance of considering the
different vaccination rates for distinct age groups
when modeling disease dynamics.

Waning Immunity and Vaccine Boosters (Figs.
4 and 5): Figs. 3 and 4 explore the impact of
waning immunity rates on the model variables.
An increase in the waning immunity rate of
children ( 1 ) leads to a rise in susceptible adult
and child populations while concurrently
reducing the vaccinated population. This
emphasizes the necessity of vaccine boosters to
counteract fast immunity waning, especially in
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children. Similar trends are observed in Figs. 4,
emphasizing the relevance of waning immunity
rates for adults ( 2 ). The findings suggest that
booster vaccinations may be crucial in
maintaining effective immunity over time for
both age groups.

Hygiene Dynamics (Fig. 6): Fig. 5 explores into
the role of hygiene (hygienic rate ""w ) in the
Typhoid model. As the hygiene rate increases,
susceptibility levels for both adult and child
populations ( AS and CS ) grow rapidly. Notably,

the linear growth of susceptibility when ""w
equals 1 suggests that heightened hygiene does
not provide significant protection, and a
considerable portion of the population remains
exposed. This underscores the need for
comprehensive hygiene practices to effectively
mitigate the spread of the disease. In conclusion,
the Figs. contribute valuable insights into the
complex dynamics of the Typhoid model,
emphasizing the importance of vaccination rates,
waning immunity, and hygiene in shaping
population susceptibility and the need for
targeted interventions based on age groups and
hygiene practices. The findings provide a basis
for further exploration and refinement of public
health strategies to control and prevent the spread
of Typhoid.

7. Conclusion
In conclusion, the mathematical modeling of
typhoid fever dynamics, incorporating age
structure, vaccine, and treatment effects through
the Homotopy Perturbation Method, offers
valuable insights into the transmission and
control of this infectious disease. By integrating
these critical factors, the model provides a deeper
understanding of disease spread and the
effectiveness of intervention strategies, including
vaccination and treatment. This comprehensive
approach aids in making informed decisions for
public health interventions, helping to reduce the
burden of typhoid fever and improve population
health. The ongoing refinement of such models,
along with their validation using real-world data,
is essential for optimizing their predictive

accuracy and ensuring their relevance to real-life
scenarios. Effective collaboration between
mathematicians, epidemiologists, and public
health professionals will further enhance the
translation of these findings into actionable
policies and interventions aimed at controlling
typhoid fever and improving overall health
outcomes.

8.Recommandation
This research underscores the importance of age-
specific vaccination and treatment strategies in
controlling typhoid fever. Public health policies
should prioritize targeted interventions to
enhance their effectiveness, especially in
resource-constrained settings. Future research
should focus on refining the model to account for
environmental and socioeconomic factors
influencing typhoid transmission. Additionally,
incorporating real-world data on vaccine efficacy,
treatment adherence, and behavioral changes
could improve the model's predictive accuracy.
Expanding the study to include co-infections or
drug-resistant strains may further enhance its
utility in guiding comprehensive disease
management strategies.
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