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Abstract

This research presents a mathematical model for understanding the dynamics of typhoid fever,
incorporating age structure, vaccination, and treatment effects. The model captures the
complexities of typhoid transmission by considering different age groups, which exhibit varying
susceptibility and contact rates. The homotopy perturbation method is applied to solve the
system of differential equations governing the disease dynamics. The model explores the impact
of vaccination programs, treatment interventions, and age-specific factors on reducing
transmission rates and controlling outbreaks. Sensitivity analysis is performed to identify key
parameters that influence disease progression, including the basic reproduction number (£, ). The
results highlight the importance of targeting vaccination and treatment strategies toward specific
age groups to enhance intervention efficacy. Numerical simulations demonstrate that increasing
vaccination coverage and treatment rates significantly reduce the spread of typhoid fever. The
findings provide valuable insights for optimizing public health policies aimed at managing
typhoid fever, particularly in regions with limited resources. This approach offers a robust
framework for assessing the effectiveness of control measures and improving disease
management.

Keywords: Typhoid outbreaks, Age-structure, Basic reproduction number. Homotopy
perturbation method, Sensitivity analysis.

1. Introduction

Mathematical modeling is a crucial tool for
understanding the transmission dynamics of
infectious diseases like typhoid fever, a
bacterial infection caused by salmonella typhi
typhoid fever is a public health concern in
areas with poor sanitation and contaminated
water, with symptoms such as high fever,
abdominal pain, and gastrointestinal distress. If
left wuntreated, it can lead to severe
complications or death (Keshav et al., 2019).
Recent advancements in modeling have

incorporated factors such as age structure,
vaccination, and treatment effects. The
homotopy perturbation method has been
particularly effective in solving differential
equations that describe disease dynamics
(Bwalya et al, 2022). Including age
structure allows models to more accurately
capture the transmission patterns and the
effectiveness  of  interventions  like
vaccination in different demographic groups
(Dougan and Baker 2014). Vaccination and
treatment are key components in controlling
typhoid fever.
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Vaccination reduces the susceptible population,
while treatment helps alleviate symptoms and
prevent  complications. = Modeling  these
interventions helps researchers evaluate the
effectiveness of control measures and optimize
strategies (Amouch and Karan 2023). Children
are especially vulnerable to severe illness and
mortality from typhoid fever, and they can serve
as reservoirs for transmission. Population
dynamics, including factors like migration and

urbanization, also affect the spread of the disease.

Models that incorporate these factors provide
insights into the long-term trends of disease
transmission (Kolawole et al,, 2022, Kuehn et al,
2022). Overall, mathematical models combining
epidemiological data, age-specific factors, and
interventions provide valuable insights into
typhoid fever dynamics. These models aid in
evidence-based decision-making, contributing to
the effective control of typhoid fever and other
infectious diseases (Liu, 2023). Efforts to control
typhoid  outbreaks typically involve a
combination of preventive and responsive
measures aimed at interrupting the transmission
of the bacterium and treating infected
individuals. Water and sanitation interventions
play a crucial role in preventing cholera
transmission and reducing the burden of the
disease. Recent control measures for Typhoid
include (Masuet and Atouguia, 2021, Melnikov
et al, 2023). Improved Water and Sanitation
Infrastructure: Investing in infrastructure for
clean water supply, sanitation facilities, and
proper waste management is fundamental in
preventing typhoid outbreaks. Providing access
to safe drinking water and promoting hygienic
practices, such as hand washing and proper food
handling, can significantly reduce the risk of
Typhoid transmission. Vaccination Campaigns
oral typhis vaccines (OCVs) have been
developed and deployed in Typhoid-endemic
areas as part of targeted vaccination campaigns.
OCVs can provide short to medium-term
protection against Typhoid and are often used in
outbreak response efforts and in areas with a
high risk of Typhoid transmission (Muchmore et
al., 2020, Muscat et al., 2022). Surveillance and
early detection: Strengthening surveillance
systems for Typhoid and enhancing early
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detection and response mechanisms are critical
for containing outbreaks and preventing the
spread of the disease. Rapid diagnostic tests,
along with effective reporting and monitoring
systems, enable health authorities to identify and
respond to  Typhoid cases  promptly
(Muthuirulandisethuvel et al, 2020). Health
education and community engagement in
promoting awareness about typhoid transmission,
symptoms, and preventive measures through

health education campaigns can empower
communities to take proactive steps in
preventing the disease. Engaging with

community leaders and stakeholders fosters
community participation and ownership of
typhoid control efforts, leading to sustainable
outcomes. Treatment and case management.
Providing prompt and appropriate treatment for
typhoid cases is essential for reducing morbidity
and mortality associated with the disease, along
with the administration of antibiotics in severe
cases. Ensuring access to healthcare facilities
equipped to manage Typhoid cases helps prevent
complications and reduce the spread of the
discase (Lawal et al, 2023). Integrated
Approach: Implementing a multi-sectorial and
integrated approach to Typhoid control,
involving  collaboration = between  health
authorities, water and sanitation agencies, non-
governmental  organizations, and  other
stakeholders, is essential for addressing the
complex determinants of cholera transmission.
Coordinated efforts across various sectors can
maximize the impact of control measures and
contribute to sustainable Typhoid prevention and
control strategies (Kolawole ef al., 2023).

2. Formulation of the model

We develop a model with Bacteria population,
Ng denoted by B(t) and human population, Ng.
The populations are subdivided into different
epidemiological classes: Susceptible of the
children (Sc), Susceptible of the adult (Sa),
vaccination (V), Infected (I), Treatment (T),
Recovered (R), and bacteria subclasses. The
models assumes that human population will be
recruited to susceptible compartment of the
children at the rate A_, and susceptible
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compartment of the adult at the rate A ,, and

susceptible individuals are infected at the rate of

aB  where & is the rate of salmonella Typhi
k+B

injections in foods and drinks _ B
k+B

probability of probability of individuals in
consuming foods or drinks contaminated with
typhoid causing bacteria. All human population
have their natural death at the rate £, and

is the

infected individuals die from typhoid at the rate

715

O, The treatment rate of infected individual

infant is represented by 7, excretion of

Salmonella Typhi bacteria by the infected
children and adult to the environment at the rate
17 and salmonella Typhi will die to the

environment at the rate V, the parameter
V¥,

vaccination rate of children and adult, while
Py, P, represents waning rate of immunity. The

@ represent hygiene rate, denote

below diagram in figure (1) represent the model
flow chart.

& A

(1-w) B
k+E

Figure 1. Schematic flow of the model formulation
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Table 1. Description of parameters
Variables Definitions
Sc(t) The number of susceptible individual children
Sa(t) The number of susceptible adult individual
V(t) The number of vaccinated individual
I(t) The number of infected individual
T(t) The number of Treated individual
R(t) The number of Recovered individual
B(t) The number of Bacteria in the population
Parameter Parameter descriptions Value References
W Hygiene rate 0.3 Kuehn et a/.(2022)
) Disease induced death rate 0.015 Kolawole et al.(2023)
01> P Waning rate of immunity 0.0186821 Lawal et al. (2023)
n Natural death rate 1/60,000 Keshav et al. (2019)
n Excretion rate of salmonella Typhoid 0.003 Kolawole et al. (2022)
T Treatment rate of individuals 0.00174478  Muchmore ef al. (2020)
& Recovery rate of treatment individuals 0.00331428  Bwalya et al. (2022)
VW, Vaccination rate of Children and Adult 0.0002 Komarovkaya et al. (2023)
G Rate at which children become adult 0.01 Assumed
K Concentration of salmonella bacteria in 50,000 Assumed
foods and water.
o The rate of salmonella Typhi injections in 10 Dougan and Baker, 2014
foods and drinks
Ac, A Recruitment rate of children and adult 150,000.1854 Muscat et al.(2022)
v The rate at which salmonella Typhi will die  0.001 Assumed

to the environment

A compartmental based model for analysing the
treatment of typhoid fever capturing age
structure and vaccine. The govern model is
given by the system of non-linear ordinary
differential equations below.

Initial model
ﬁzA_[(l—a))aB+'u}S
dt k+B
dizm_(#_{_g_{_é')[ (l)
dt k+ B

dR

—=¢&l — uR

d "

dB

—=(0-w)nl -vB

I ( n

Formulated model

The equation (1) of Halson et, al. (2021) was
extended by incorporating the following novelty,
Age structure, Vaccine and Treatment. The

model equation is therefore given in equation (2)
inclusive of the above parameters. Hence we have:

B A~ WABIS 48,1~ ()5, + p 5,

ds,

B N~ WBIS. 5,1~ () + py 45,

v 2
7 v Sc+ S, —(p +p)v—pv

dr

= (= WABIS. +8, 1+ (= WA,BIS, +5,]-(u+T+ )]

dT
—=d -l —ul
di "

dR
T -
g TR
dd—f::(l—a))nl—vB
Ba
1 =1 =
Where 4 = 44 K+ B
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3. Analysis of the model

3.1. Existence and uniqueness of model solution

Feasible Region: The analysis of the feasible was done, in which the model solution is bounded. The
total human population (Nu) considered in above model are

Nu= (Sc+Sat+V+I+T+R),
dN

7:/\‘ _(I_W)ch[SC +SA]_(/J+!//I)SC +plv_gSC +AA _(I_W)ﬂ’AB[Sc +SA]

dt

—(u+y)S, +pv+gS.+y,S, +S,v,

—(p+p)v—puv+(1=-wAB[S, +S,]+ G)

A=wA B[S, +S,1-(u+7+0) +d —eT — uT + T — 1R

dN

a =N —pSc—piSc+pv+ Py +A = 1S, S A WS +Y,S, — pv 4)
—pv—puv—p —d +1d —ul — iR

dN (5)

E:AC +A, —u(S.+S,+v+I1+R)

dﬂ:Ac+AA—W At =0

d Ap+A

. _ C A

At no outbreak of disease, I = 0 NO)=—+C
dN

EL oA HA - (6)

dt C 4~ HUN C:N(O)_AC+AA

dN
—+ A.+A
dt HN =

LetP=u, O=A.+A,

By method of integrating factor
N-IF =[IF - Qdt

LF= (/P

LF= gl ult = g

N.L# = jf*" (Mg +A)dt
N0 =(Ac+A )| 0de

(Ao +A )"
7]

N0 =( +C

(A

N@y= LBt AD e
U

N(t) < {AC-"AA +(N(0) - AC"'AA)KM}
H H

Lsz(t)<Lzm{A+A (o)At Auy - “’}
I u

>0

As+A
N, ()< e ha )
Also the bacteria population is
Ny =(1-winl -
I-w
Ny () = L0 )" )
14

Thus, the feasible solution of the system equation of the model enters and remains in the region

T, =(S.,8,V,,T,R)eR.*;S.,S,.>0,V,LT,R>0;N, <

(Ac+A)A-w
uv

I,=BeR,:B>0:N,<

A-+A,
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is positive invariant. Therefore, the model is well posed epidemiologically and mathematically. Hence,
it is sufficient to study the dynamics of the basic model in I".

3.2. Positivity and boundedness of model solution

The initial condition of the model was assumed to be non-negative and now, we also proof that the

solution of the model is positive.

Theorem 1

Let={(S¢,S,.v.I,T,R,B) € R';5¢, 20,5, 20,v, 20,1, 20,T, > 0, R, >0, B, > 0

Then the solution of {Sc S v, 1, T,R, B}are positive for t >0

Proof

From the system of differential equation, we
solve the equation one after the other.

First Equation;
i;=A,%vﬂw&m&+Sﬂ—m+w0&+pw—g$
ds
dc 2—~(u+y, +g)S.(1)
t
ds.,
>—(u+y, +g)dt
S (1) (u+y, +g)dt)
Sc

+(u+w, +2)dt >0
S (1) (u+y, +g)

Then solving using method of integrating factor
and applying condition, we obtained

S, (t)g(ﬂw/ﬁg)t > J‘E(wu/ﬁg)t 0dt
S >0+ C

SC (t)g(ﬂw/ﬁrg)l >C

SC(Z) > gt o

So()= 8 -7V >0 (9)

Then solving the second equation,

Bt N (= WA,BIS, +8,1-(u+y)S, + pov+ g
ds
th 2 _(ﬂ‘l"//z)SA(t)

ds
5 TS, 020

Similarly using integrating factor and applying
conditions, it gives

SA (t) i f(/mh)t > Jg(ﬂﬂh)t -0dt

= S,(O=S, (0)-(""" 20 (10

Also we took the third equation of (3.2)

dv
o =y Sc +y,S, —(p + py)v—uv

dv
o 2—(p, +p, + LV

dv
EJF(P] +p, + ()20

Also using integrating factor and applying the
condition,

V(t) . f(f’ﬁrpzﬂl)t > J.E(pﬁrpzﬂ/)t .0dt

V(t)- (PP S ()
V)=V, Pt >( (11)

then taking the fourth equation of
ar_ A-WAB(S+S )+A-WA,B(S. +S,) -
(u+t+9)I

dl
—2>—(u+7+0)1
oo )
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%+(ﬂ+r+5)](t)20

I(t).g(/ﬁ—z#é‘)t > J‘((/H—rﬂi‘)t Odf

I(t)- 0¥ >0+ C
Ity =1, - 1(t)-L¥ " >0 (12)

dT
—=1 - — ul
dr H

ar >—(e+ )T ()
dt
62—?+(8+y)T(t)20
d—T+(g+y)T(t)20
dt

T(t)- 0" = [£C" -0 dt
T@)>T,- 0" >0  (13)

dR

T —

dt HR
dR
— 2 —uR(t
5 o HRO)

dR
—+ )=>0

7 HUR(?)
R@)f“”zjﬂmﬂow

R(t)- 1" >0+C
R{t)=R,- 1" >0

dB
—=(1-w)nl -vB (14)
i (I1-w)n

dB

— 2> —VB(t

7 )

3.4. Endemic equilibrium point

B +VvB(t) >0
dt

B(t)- %" > [0 04t

B(t)- (" >0+ C

B(t) > B,t"" (15)
This completes the proof of the theorem, and it
shows that the solution of the model is positive.

3.3. Existence of disease free equilibrium
state

To analyse the disease free-equilibrium we let
the right hand side of the model (2) to zero,
evaluating it

atSc=S4=V =1 =T =R =B =0
and solving for the non-infected and non-carrier

state variables.

:AA+p2V+gSC (16)
Aﬂ
(/”‘H//z)
5 —n PV FEAC a7
’ (u+y,+8)
(u+y,)

S :AA(ﬂ+V/1+g)+p2V+gAC
AO

(u+y +g)u+y,)
WiSc +y,S, —(pr+ )V -V =0

WiSe +v, S, =(p + o, + )V

V= WS +¥,S, (18)
(o +p,+ 1)

Ao+pV
(u+y,+8)’
A (u+y +8)+pV +8Ac
(u+y +g)u+y,)
¥Sc +¥,8, ,0,0,0,0
(o +p, + 1)

E, :(S(baSAO’V;)a[o’n’RusBo)z

We represent our endemic equilibrium point as £~ (SC* , SA* V51", T",R",B"),

Theorem 2

There exists a unique equilibrium of system of when R, > 1
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{l")’(;ogrfc:)ve this theorem, we equate the right-hand side of the system to zero and substitute Sc, Sa, V, I,

TR, BwithS.", S, , V', I",T",R",B", respectively, to get
0=Ac~(1=-WAB (S +8, )= (u+y)S. +pV" -gSc’
0=A, —(l—w)ﬂ,AB*(SC* +S )= (u+y,)S, +p, V" +gSC*
0=y,S. +y,S, —(p+ V' —pV’

0=(1-wWAB (S +8,)+(U-wA,B (S, +8, )= (u+z+8)I" (19)
O=1t"—¢el" —ul”
0=el" — uR"

0=(-w)nl" —vB"

From the last equation of system (19) we have
B - (1-wn(-w)A.B"(S." +S,)+(1-wA,B* (S, +S,")

v(u+7+9)
o (1-w)AB* (S, +S, ) +(1-wA,B* (S, +S,")
(u+7+9)
R - et(l-wAB* (S, +S, ) +(1-wA,B"(S." +S,")
u(E+u)(p+7+0)
e WSS HYaS,)
(o +py + 1)
- t(1-w)A.B"(S." +S, )+ (1-wA,B* (S, +S,") (20)
(e+m)(u+7+9)
g Ao —(1-WAB'S, +p V"
C *
{A-WAB" +(u+y)+g}
G A U=WAB S pV
A *
{A-wWA,B" +(u+y,)}
3.5. Basic reproduction number R, F is the new infections, while the V are transfers

of infections from one compartment to another.
There are two diseases state but only one way

to create new infections. Hence exposed and _% % %
infected compartments of the model are oI oT OB
involved in the calculation of R, . P % % %
Where R, = p(G — AI) ol oI 0B
9 o o9
F = I (xy) V= v, (x,) Q1) | ol O0T OB |
ox, Ox,
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Let V| =(u+7+8)W(e+p)
fi= 1-w)A.B(S.+S,)+1-w)A,B(S.+S,) > v(e+ 1) 0 0 (23)
£=0, £:=0 V' =adiV =|vr v(u+t+6) 0
v(e+u) 0 0 (e+m-oy 0 (+u)(p+7+5)
Y7
V' =adjy =|[vr v(u+t+8) 0] ] et ) o 0
[e+ma-aom 0 (e+mwure+O]l]  po_ 15()[ Y+ 7+) 0 }
Now let VUETEOET | Ly oy 0 (6+m)(u+7+5)
A=(1-w)2A.(S. +8,), B=(1-w)A,(S.+5,) R, = p(G — Al
0 0 A+B
F=|0 0 0 ’ [R’ _20-0) A (A ) A+ o)+ A (1t +g)+sz+gAc)} (24)
0 0 0 V(p+T+0)p+y, +g)(p+7+06)
_8Vl 61/1 3V1 ) 3.6. Local stability of disease free equilibrium
ol oT OB The disease-free  equilibrium is locally
ov, ov, ov, asymptotically stable if the basic reproduction
V= o poe B number. R, <1.
ov. ov. ov. The characteristic polynomial of the Jacobian
- - - matrix of disease-free equilibrium is given by
el or 0B | | J, — A, |= 0 where is the Eigen value and 1 is the
Where identity matrix. The Stability criterion of Disease

V,=—(u+t+6),V,=d —(¢+u)T,V, =(1—w)y Free Equilibrium, the general Jacobian matrix has
been calculated as obtained;

(L+7+9) 0 0 The local stability of the disease free equilibrium
22) of the Jacobian matrix of the system of (2),
V=|-7 etp 0 where v, —21[=0 8 A and I are the Eigen-
—(-o) 0 v values and identity matrix respectively. Where
=1, 2,...

(A= WABS, + (v, + @~ (- WABSc, pr. 000 ~[1-w)i (S +5,)]
~[(1-w)2,BS , ~ g1, ~[(1~W)A,BSc + (u+y,)], pas 00 00-[(1-w)A, (S, +5,)]
v, Vs —(p+py+tw), 0 0 0 0
Jg, =[A=w)ABS , +(1-w)A,BS,L,[(1-w)ABS. + (1-w)A,BS:],0,(u+7+5), 0,0, H
0 0 0 T —(e+u), O, 0
0 0 0 0 & - 0
0 0 0 d-w)yy O 0 -V

Where H=[(1=wW)A. (S, +S5,)+ A =w)A1,(S. +5,)]

KOLAWOLE and AYOOLA (2025)
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—(u+y,+g) 0 el 0 0 0 0
g —(u+y,) P> 0 0 0 0
v, ¥, —(p+py+u) 0 0 0 0 (25)
Jg, =10 0 0 —(u+7+98) 0 0 0
0 0 0 T —(e+p) 0 O
0 0 0 0 & -u 0
0 0 0 (1-w)n 0 0 -v
Then ‘JEO —/1]‘20,(25) will becomes
—(u+y, +2)-4 0 £ 0 0 0 0
g —(u+y,)-4 p 0 0 0 0
¥, v, —(p+ptu)—4 0 0 0 0
0 0 0 —(u+7+8)-2, 0 0 0 |=0
0 0 0 T —(e+u)-4; 0 0
0 0 0 0 P —p-i 0
0 0 0 A-w) 0 0 vy

By using Atangana Belame invariance principle by lower triangular matrix.
We obtain, therefore,

A ==(u+y, +2),4, =—(u+vy,), 4y ==(p, + p, + 1), 26)
Ay =—(u+t+0), A =—(s+w),Ag =—p, A, =—v

Since all the eigen values are all negative, hence the disease free equilibrium is locally asymptotically
stable.

3.7. Local stability of endemic equilibrium
The Endemic equilibrium of the proposed Epidemic model is locally asymptotically stable if R, <1

and unstable otherwise if R, > 1

We linearized each of the compartment by let

S.=a+8.,8,=b+S, " V=c+V' I=e+I",T=x+T",
R=y+R',B=z+B"

27
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From the system of equation (27), we obtain
% =A. —[1-w) A za] - [(1- @)A zb] - (¢ +y,)a + p,c — ga + higher order+ non — linear terms
% =A, -[Ad-w)A,zal -[(1 - @)A, zb]—(u+w,)b+ p,c — ga+ higher order+ non — linear terms
% =y,a+y,b—(p, + p,)c— uc + higher order+ non — linear terms (28)
de

% =[(1-w)A.za]+[(1 - @) A-zb]+[(1 = W), zb] — (1t + T + O)e + higher order +non — inear terms

dx

=1e— (& + p)x + higher order +non — inear terms

d . .
j); = &x — Wy + higher order +non —inear terms
dz . .
= = (1—w)ne—vz + higher order +non —inear terms
t
Then we differentiate each compartment one by one and take the Jacobian-Matrix.
—[A-wAcz+(u+y, +2)], —[1-0)Az],  p, 0 0 0 -[d-wi(a+b)]
-[A-wi,z-gl, -[Ad-wAz+(u+y,)l, p, 0 0 0-[d-wAa,(a+b)]
v, ¥, -(o+ptu), 0 0 0 0 (29)
T ==z +(-0)AzL[1-wA,z+(1-w)A,z], 0, —(u+7+5) 0 0 L
0 0 0 ¢ —(e+m) 0 0
0 0 0 0 & -u 0
0 0 0 (-wny 0 0 —v

Where L={[(1 - w)A ca] +[(1 - w)A ob]+[(1 = WA ,a]+[(1— w)A b]}

The Jacobian matrix of the system of (3.83) were obtained, where ‘J B = ﬂl.] ‘ =0

~[A-wAcz+(u+y +]-4 ~[1-wA.z], p,0 0 0 —(I-w)A.(a+b)
~[A-wA zb-g], -[A-WA z+u+y,]-1"p,,0 0 0 —(1-w)A ,(a+b)

v, v, —(p+py+ 1) =2 00 0 0
[A=-W A z+(1=W)A z],[1-W)A z+(1-W)A 2], 0, —=(u+7+5)-4, 00 L =0
0 0 0 T —(e+ )= 0 0

0 0 0 0 € —u-4 0

0 0 0 (1-w)n 0 0 -v-A

KOLAWOLE and AYOOLA (2025)
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A== Wiz +(u+y, + @ B=—A1- WAz +u+y,], o)
C=—(p+p,+u), D=—(u+7+8),E=—(¢+p),F=-pu,G=-v
a=8S.-S.,b=8,-S,,c=V-V'e=I-1"x=T-T", 31)
y=R-R',z=B-B"
(A= 2YB=ANC =YD= ANE = 2WF = 2)G-2")=0
The Characteristics polynomial is given by
A +a A’ +a,A] +a At +a, A’ +a A’ va ) +a, (32)

Applying the Routh-Hurwitz criterion, it can be seen that all the eigen values of the characteristics
equation above have negative real part. Then the endemic equilibrium is locally asymptotically stable.

3.8. Global stability of disease free equilibrium
At equilibrium where C,,C,,C, are constants, the global stability for the disease free equilibrium is

stable if R, < lunless otherwise. Consider the Lyapunov approach on the disease class deduced as;

V(s,,s,,1,,1,,R,P,t)=C\I, + C,I, + C,1, (33)
dv I 1
—t:Clll +C,1, +Clyasl =1, = 1,=1,and I, =P (34)

Using Lyapunov function approach to proceed for the result for global asymptotic stability of the
proposed model at disease free equilibrium state.

Let V (t, Sc, Sa, V, I, Q, R, B), on the disease state, the derivatives of the respective state variables is
deduced as:

Vit LT,B)=Cl +C,I,+C,1;,as

‘Z—V =C\1, +C,I, +C,I, , where Ci<Cx<C3

t

dv

ar =ClA-WAL(Sc+S )+ A=W L(Sc +S,)—(u+7+0)] ]+

Col(e, = (& + )1 + Gl (1= winl, ~VI,] 35)

% =Cl1-WALS, +A=WALS, +A1-wA, LS. +(1-w)A, LS, -
(u+t+0)|1+Cytd, = C,(s+ ), + C;(1=w)nl, — Cyvi,

a;_lt/: Cyd, +C;(1-wypl, —C(u+7t+0)], -C,(¢ + ), + C,[A-w)A. 1,5, ]

+C =W A LS 1+ C[A-mA LS ]+ C[(1-w)A, 1,8, ]
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dv
—tS[Czr+C3(1—W)77—C1(,u+r+5)]]1—C2(£+,u)12+[C1(l—w)iCSC
+C,(1=wW)A.S , +C,(1=w)A,S.1+C,(1-w)A,S 11,
Since C; 20
av
ES[C{[—CI(/J+T-{-5)]]1—C2(8+/1)[2
(- Wi TPV g0 1= wa, MWV 3DV A
+ (ﬂ+‘//1+g) (,Lt+l//1+g)(y+l//2) 7
3
[C - Wi, — 2y a-wa, 2BVt &R
(u+y, +g) (u+y, +2)(u+y,)
dv

ES[CZZ‘—CI(,U-FT+5)][1 -C(e+ ), +

AC+pr ]+[C1(1_W)ﬂfc AA(/u+l//l +g)+p2V+gAC

[C,A-w)Ac
C (L+y, +g) (u+y, +g)(u+y,) I

[C,(1-w)A, L]ﬂq (1-w)A, Aury, +8)+8hc
(u+y, +g) (Ut +Q)(u+y,)

1

Recall that C, <C, < C,, C, 20, and let C, = Girio)
H+T+

I=WA(u+y ) A+ p V) +(A=WAJ[A (u+y, +g)+p,V + gA ]+
AV | A=W, u+y,)+ A+ p A=W A, (u+y, + 1+ 0V +8A) | |37)
dt (U+y, + @ u+y, u+7+9)

It is important to note that V=0, only when [=0, the substitution of I=0 into the model system of

equation (3) shows that g — Actpy | S, = AUty +8)+ PV +8Ac 4t t—w, w<l and based
o(ury g ((u+y, +e)u+y,)

on Lasalle’s invariance principle, Hence £, = 0 is Globally Asymptotically stable whenever R, < 1

3.9. Global stability analysis for endemic equilibrium point
By employing Dulac criterion to proceed for the result for global asymptotic stability of modified model.

Let X= (Sc, Sa, V, L T, R, B), where G(x) = (38)
SCSA
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ds,
dt

G(—7-)

ds,

G
(dt

)

dv
G =
dI
G(E) =

G0 -

dR
G (E)

d
G-

1
SCSA
Ao _(=-WiB_(=WAB _(u+y,) |
SCSA SA SC SCSA

[Ae —(A=WAB(S. +S,)—(u+y)Sc + pv—gSe

P,V
SeS,

g

SA

1
ScS.

_ A, _(1_W)/1AB_(1_w)/1AB_(/u+l//2)+ PV + &
ScS, S, Sec Sec S,8¢ S,

(A, —A=WA,B(Sc+S,)—(u+w,)S, +p,v+gSc

LV (atp)v wy

1 4
——[w,Sc +w,S, —(p, + py)v— uv]=——
(W, Sc +v,S,—(p, +p,)v—uv] S.S, S.S, S.S,

S.S, ScSy
1
SCSA
1-wA.B N (1-w)A.B N 1-wA,B N (I-wA,B (u+7+9)
SCSA SA SASC SCSA SCSA

1 ol el ur
S8, ScS, SeS, 5.8,
1 &l _ﬂ
S.S, 8.8, 8.8,
(1-w)nl
SCSA -

[(A=wW)AB(S. +8 )+ (A=W, B(S. +5 )~ (u+7+6)]]

(39)

[ —el —uT]=

[T — pR]

1
ScS,

vB

Then we obtain

d

dt

SCSA
(o2
dt

a(G

B

0
o

dl

_j .
dr

[(1- @)yl —vB] =
ds,

i) a5,

os,
o)
dt ) OR

ds,
dt

C

Js

)
dt

)2 (G

ov
dR

— |+
)

(GX)= (G

0
or
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4 (ax)e 0 A U=wicB (-wicB (v pr g,
dt oS-\ S-S S, S S, S.S, S¢

0 (A _(=WAB_(-WAB_(u+y) pv g,

oS, \ S-S S, S S SSe S

ofwv v, (patp)v_ uv ), “0)

ovisS,S. S.S, S.S, S:S,

0 (l—w)/ICB+(l—w)/ICB+(1—w)/1AB+(1—w)lAB_(,u+r+5) N

ol S, S S, S S:S,

ir]_gl_,uTJrigT_,uRJr

or\S.S, S.S, S.8,) OoR\S.S, S.S,

~

SR

I~ 77
(9%

l-wyp vB
ScSy S8y

Then we obtain

4 (Gx)= 2 [A _wrw)  pv _£J+

C
s.s, S, S.8, S

A

A, _(ﬂ+'//2)+ PV + &
S8, S8, S.S, S

A

Vi Vo (pitp)v  pv | Of (u+T+6)) (41)
S, S. 8.8, S.8,) al\  s.s,

r]_gl_ﬂT+igT_yR+
S8, S8, S.S,) OR\S.S, S.S,

Now we consider the parameter with and without state variables i.e those parameter without are
negative invariant as those with states variables are neglected not relevance to .S,

d(GX)z 0 _ AC _(/u'H//l)_é n 0 _(,U'H//z) n
5SC S8, S, S, Y S8,

di
i(_(mpz)v_ uv j+£(_(ﬂ+f+5)J

oV S.S, S8.8,) ol S.S,

d 1
—GX)=———lA e + (ury) g+ (ury) + (o + p)v + v+ (T +8)i<l (42)
c~ 4
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Hence the orbit of the region is epidemiologically stable at R, >1 such that perseverance of the disease

reduces and controlled at £ >1.

3.9.1. Sensitivity analysis of R

The robustness of the model predictions with respect to parameter values and also to detect parameters
that mostly impact on R, . To study the behaviour of a relative change in a variable with respect to

changes in a parameter. In order to measure the impact of the model parameters. The sensitivity index

analysis using normalized sensitivity is obtained as;

OR OR OR OR
0.0 @ =—1.278688525 0 - —20. i =0.01799667
oo Ow R, 006 00 R,
OR OR OR OR
—0=—0-l=1.000000000 —0=—0-£:1.003122405><10715
on  on R, o ou R,
OR OR OR OR
o _ T Vi _ 3738474319 %107 L0 = T P _5 00004182 x 107
oy, Oy, R, opy 9p R,
OR OR OR OR
o~ B0 V2 _ 5610142447 x107° Zro = Tl P2 _ 5 193040109 x 107 “43)
oy, Oy, R, op, 0p, R,
R R
Ry _ Ry & 9234591679 x10°
0g g R,
%Z%.Lzlxlo-é
ov. 0v R,
OR OR
T % T _0.089585635
or 0t R,
Table 2. Sensitivity index of R N
Sensitivity
Description Parameter indices
Waning rate of immunity P10y 0.63663
Excretion rate of salmonella typhoid n 1.82363
Concentration of salmonella bacteria infection in fluids and water vV, 0.06253
Rate at which children becomes adult G -1.71212
Death rate H 0.08273
Rate at which salmonella typhi will die to the environment A% 0.00263
Disease induced death o 0.01263
Hygiene rate w 1.20826
Treatment rate T 1.23627
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The table above shows the sensitivity index value of model parameters. The positive values in the above
table describes or show the non-prevalence of the virus increases. They contribute in decreasing the
value of basic reproduction number R,

4. Numerical simulation

In this section, we apply the homotopy perturbation method to obtain an approximate solution for the
Typhoid model (1) by constructing the following correctional functional

1=V B (0 1) 80005, 045, O] +01)5.0- 5.0+ 7 1) 0

1=V D (1t O 05,010 050 7 0) =0
1= P o 05,045, 0- pW - 1) -0 (@4

(1—p>";§f>+p(”’;(j)—«l—w>B<r>[sc<r>+sA(r)]uc+z,4>—<y+r+a>z>j=o
1-p) 700 d§f>—<ﬂ—<e+ﬂ>r>}=o

(l—p)auj:)+p(a§£t)—(8T—#R)} =0
1= P20 o O 51 w1)-v800)

+p

dt dt
We can assume the following power series of P as solution for the model variables in (44) such that

S.0=2 75,0} 5,0)= 2 5, 00 V=3, 0) 1= 3 5, 0)
T(0)= 3 &, 0) RO)= Y. pn6) BlO)=Y p'b,(0) @9)

n=0
Evaluating (44) using (45) and subsequently collecting coefficients of powers of p , for n > 1 yields
the following system

Atn =0, coefficients of p° are:
dsco(t) 0 dSAO(t) 0 dvo(t)=0 dio(t)=0 dgo(t) 0

- ] ’ ’

]

dt dt dt dt dt (46)
dryt) _ 0, dby(t) _,
dt dt
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Atn =1, coefficients of p' are:

L) (0 (WA Ols0) O G000+ 00 |
Lalt) (1 sle) O] Jsle) 5,005 20

2 t(f) = (5.0 (0)+ 25,10 (1)= (o1 + 92 o 1) = v, (1) (47)
L (X CHOTEN() RO PR ARESRN)

9 0o + ) )

) ot 0)- )

LA 110 _

Also atn = 2, coefficients of p2 are:
_dscz(t):(Ac_(1_W)ﬂ’c(bl(t)[sco(t)-i_SAO(t)]+bO(I)[Scl(t)+SAl(t)])_]_
dt (,U"'l//])s-() gsl()+pl](t)

ds“(t):(l\a—(l—w (B (s ()+sAo(t)]+bo(t)[scl(t)+s,“(t)])—]
7

)2
dt (,U""/’z)a()+g5¢-1()+p2"1(t)

D) (g (s (- (o5 pa ()= v, (1))

dt (48)
di, (1) _ [El = w )by ()seo () + 540 ()] + b (0], 1( )+ s (N2, + ZA)—J

u+t+8)i(t)

dz,(1) _ (zi, (¢) = (¢ + 1 )& (1))

dt
drd—t(): (6‘5 ( ) ,Url(t))
db;t(f) =n(1—w)i(t)-vb (r)

An(i so on. Solving system (3) using the initial conditions
SC(O): Scos Sa(o):SaO’ V(O) Vo» 1 ( ) oy, 5( ) o> r(()): Ty, b(o):bo ’

Also, evaluating (48) using the initial conditions the following results are obtained for the first
approximations
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Scl(t) ( (1 W)/At b [Sco +SA0] (ﬂ+'//1 )Sco — 85 +p1V0)[
S 41 f) ( ( )ﬂ'ab() [Sco +SAO] (,U'*‘Wz )SaO +85. +p2v0)l
1(t) ( cO+l//2SAO_(p1+p2)v0_/'[v0)t
i (€)= (1= whbo[s.o + 5.0 ) +2,) = (2 + )0y ) “49)
&(e)=(d, —(e+u),
(t) (3650 /u”o)t
b, (t)z (77(1 W)io —vb, )t

the second approximate solution is obtained:

. (t): [Ac _ (1 _ W)ﬂc [b1 (tlsco (t)+ S (t)]+ b, (t{(Au - (1 - W)/lcbo [Sa[) *+540 ] - (ﬂ +¥ )Vco — 850t P Vo) :D

<

~

+(Aa 7(17W)Z‘ab0[sl'0 +SAO]7(/H+I//2 )Ya() +85. +,02V0)
_(/“H/’l 4 XA( _(1 _W))%bo [Sco +SA0]_(/‘+‘//1 )Yc() — 85 +plv0)+p] (V/lsco TS 40 _(p] + 0, )Vo _ﬂ"o)

(Ac - (1 - W)/lcbo[sco + SAO]_ (,u +¥, )Sc(] —8&5t ,O]VO) )
o (0)= {Aa -(1- w)za[bo(t){ J +(7(1=w)iy = vb, s, + SAO]J
(

~

+ (Aa - (1 - W)/iabo [Sco + SAO]7 (,u +y, )SaO +85.01 PV
—(uty,+ g A = (= Wb [0+ 540 |- (141 )50 = 8500+ PV )+ 02 (11500 + 125 40 = (01 + 2 Iy — 129,
vz(t)z [‘/’1 (Ac - (1 - W)/lcbo[sco + SAO]_(/“ +y, )S(‘O — &S0t p]"o) j
5 (A, = (1= W)y [0+ 5 40 | (17 )500 + 8520 + P20 )= (01 + s + 1) W18 + 1728 10— (1 + 2 g — 1,

(/_\(/: (1= w)Ady[s.o + sAo]J

+y, )Sco — 850t PV
1- 1—-w)i, —vb, )|s. bt A+
iz(l‘)= ( w (77( W)lo Vo)[SL0+SA0]+ 0( +(Aa_(l_w)/1abo[sco+sAo] (L+ A) .
(

—\uty, )SaO T 8501 PV
_(ﬂ+7+5)((1_w)bo[sco +SA0](/IC +/1A)_(1U+7+5)i0)

2

rz(t): ((g(ﬂo _(‘9 +ﬂ)§0)_ﬂ(8§o _ﬂro)))t_

2
Do) ==X A=y lso 5.0 JA +2 )+ 7+8) )Aofl—w)iy vy ))t;

Summing these results up gives the approximate series solution of the system given by

5.0= 35,0 5.60= 30,00 70)- 3,0

~
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5. Result

In this section, we conduct a numerical evaluation of the model results and discuss the convergence of
the obtained solution. Utilizing the base line parameter values outlined below

2000 — =
10800 | W 1=000
o w1=025
G | — W1=050
1500 1 — W1=075
oo o 150 — W 1=100
=
= . 1000
10200
750
10000
500 4
9800 -
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9600 | e ———
T T T T T T 0 T T T T T T T T T
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Figures 3. Impact of children vaccination on model variables
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Figures 4. Impact of children vaccination on model variables
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Figures 6. Impact of children vaccination on model variables

6. Discussion

The presented Figs. provide a comprehensive
insight into the dynamics of a Typhoid model,
focusing on the impact of vaccination rates,
waning immunity, and hygiene on the
susceptible adult population § (t) , susceptible

children population S (t ), and the vaccinated
population V(t) )

Vaccination Rates and Population Dynamics
(Figs. 2 and 3): Figs. 2 and 3 highlight the
influence of vaccination rates on the various
population groups. In both cases, the susceptible
adult and children populations increase as the

This
suggests that increasing the vaccination rate for
children has a positive correlation with the

vaccination rate of children , rises.

susceptibility of both adult and child populations.
Moreover, Figs. 2 demonstrate that the rise in the

vaccination rate of adults (i, ) results in a faster
increase in susceptibility for both adult and child
populations compared to the effects of i/, . This
underscores the importance of considering the

different vaccination rates for distinct age groups
when modeling disease dynamics.

Waning Immunity and Vaccine Boosters (Figs.
4 and 5): Figs. 3 and 4 explore the impact of
waning immunity rates on the model variables.
An increase in the waning immunity rate of
children ( p, ) leads to a rise in susceptible adult
and child populations while concurrently
reducing the vaccinated population. This
emphasizes the necessity of vaccine boosters to
counteract fast immunity waning, especially in

KOLAWOLE and AYOOLA (2025)



Mathematical Modeling of Typhoid Dynamics with Age Structure, Vaccination, and Treatment ...

children. Similar trends are observed in Figs. 4,
emphasizing the relevance of waning immunity

rates for adults ( p, ). The findings suggest that

booster vaccinations may be crucial in
maintaining effective immunity over time for
both age groups.

Hygiene Dynamics (Fig. 6): Fig. 5 explores into
the role of hygiene (hygienic rate "W" ) in the

Typhoid model. As the hygiene rate increases,
susceptibility levels for both adult and child

populations (S 4 and S ¢ ) grow rapidly. Notably,

the linear growth of susceptibility when "w"

equals 1 suggests that heightened hygiene does
not provide significant protection, and a
considerable portion of the population remains
exposed. This underscores the need for
comprehensive hygiene practices to effectively
mitigate the spread of the disease. In conclusion,
the Figs. contribute valuable insights into the
complex dynamics of the Typhoid model,
emphasizing the importance of vaccination rates,
waning immunity, and hygiene in shaping
population susceptibility and the need for
targeted interventions based on age groups and
hygiene practices. The findings provide a basis
for further exploration and refinement of public
health strategies to control and prevent the spread
of Typhoid.

7. Conclusion

In conclusion, the mathematical modeling of
typhoid fever dynamics, incorporating age
structure, vaccine, and treatment effects through
the Homotopy Perturbation Method, offers
valuable insights into the transmission and
control of this infectious disease. By integrating
these critical factors, the model provides a deeper
understanding of disease spread and the
effectiveness of intervention strategies, including
vaccination and treatment. This comprehensive
approach aids in making informed decisions for
public health interventions, helping to reduce the
burden of typhoid fever and improve population
health. The ongoing refinement of such models,
along with their validation using real-world data,
is essential for optimizing their predictive
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accuracy and ensuring their relevance to real-life
scenarios. Effective collaboration between
mathematicians, epidemiologists, and public
health professionals will further enhance the
translation of these findings into actionable
policies and interventions aimed at controlling
typhoid fever and improving overall health
outcomes.

8. Recommandation

This research underscores the importance of age-
specific vaccination and treatment strategies in
controlling typhoid fever. Public health policies
should prioritize targeted interventions to
enhance their effectiveness, especially in
resource-constrained settings. Future research
should focus on refining the model to account for
environmental and  socioeconomic  factors
influencing typhoid transmission. Additionally,
incorporating real-world data on vaccine efficacy,
treatment adherence, and behavioral changes
could improve the model's predictive accuracy.
Expanding the study to include co-infections or
drug-resistant strains may further enhance its
utility in guiding comprehensive disease
management strategies.
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