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Abstract  

This research presents a mathematical model designed to control measles transmission through 

age-structured vaccination. Vaccination is pivotal in controlling this contagious disease, and the 

model investigates various aspects such as existence and uniqueness, minimal recurrence rate, 

stability analysis of local and global equilibria, and sensitivity analysis. The disease threshold  

being a determining factor for persistence of measles as or it dies out with time as      

Utilizing a numerical simulation approach of homotopy perturbation method for numerical 

analysis, the model assesses the impact of vaccination on the spread of measles whose graphs 

depicts on each sub-population. Results indicate that vaccination emerges as a potent and 

efficient control policy, effectively flattening the disease curve and it recommended to policy 

makers and health practitioners that strict adherence to the use of vaccination to curb the rapid 

spread of this deadly disease transmission.    

Keywords: Measles, Age-Structure, Vaccination, Stability Analysis, Homotopy Perturbation 
Method    
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1. Introduction 

Measles, a highly contagious viral infection 

affecting the respiratory system and causing 

systemic symptoms, presents a challenge to 

public health globally. To address the pervasive 

impact of this disease, diverse control strategies 

have been deployed, with vaccination playing a 

pivotal role (Kolawole et al., 2020). 
Vaccination efforts have demonstrated success in 

curtailing the burden of measles in numerous 

regions, yet the effectiveness of these initiatives 

can vary markedly depending on local 

circumstances and the availability of treatment 

resources (Kolawole et al., 2020). Undertaking 

a comprehensive analysis of the efficacy of 

vaccination as a central component of measles 

control in settings where treatment resources are 

already strained. Specifically, we incorporate a 

saturated treatment function into our examination 

to capture the intricate relationship between 

vaccination and treatment amidst limited 

resources and heightened disease prevalence 

(Castillo et al., 2002). Measles, an infection 

characterized by fever, cough, runny nose, 

conjunctivitis, and a distinctive rash, has had a 

profound impact on human health throughout 

history (Wusu et al., 2022). This disease, 

primarily caused by the measles virus, can spread 

rapidly, leading to severe illness, complications 

such as pneumonia, encephalitis, and in some 

cases, fatalities (Kolawole et al., 2022; 

Mutairu et al., 2022; Mutairu et al., 2023). 

Over time, various measures have been 

employed to combat its devastating effects, with 

vaccination emerging as a crucial intervention in 

the ongoing battle against measles (Mutairu et 

al., 2023). Control strategies typically 

encompass a spectrum of interventions, including 

vaccination campaigns, surveillance, and public 

health measures, all of which have played a vital 

role in saving lives and preventing outbreaks 

(Kolawole et al., 2022). However, the 

challenge escalates when disease incidence 

surpasses the capacity of available treatment 

resources Mutairu et al., 2023; Mutairu et al., 

2023; Mutairu et al., 2023; Mutairu et al., 

2023; WHO, 2020; Bozkurt et al., 2021). In 

conditions of high-treatment saturation, the role 

of vaccination becomes particularly pivotal, as it 

can alleviate the overall disease burden and 

alleviate strain on overwhelmed healthcare 

systems (Kolawole et al., 2020). There is a 

pressing need to gain deeper insights into the 

dynamics of vaccination in scenarios where 

treatment resources are stretched thin (Ferguson 

et al., 2022; Agusto and Leite, 2019). Through a 

systematic evaluation of vaccination efficacy in 

high-treatment saturation conditions, we aim to 

provide valuable insights that can inform more 

effective and efficient measles control strategies 

(Dejong, 2019). The conditions may be prevalent 

in resource-limited or conflict-affected regions, 

making our research particularly pertinent to 

areas where healthcare infrastructure is already 

under strain (Opoku and Afriyie, 2020; 

Asamoah, 2018). Measles is transmitted 

primarily through respiratory droplets and direct 

contact, with the potential for widespread 

dissemination in susceptible populations. The 

consequences of infection can be severe, 

including complications such as pneumonia, 

encephalitis, and death (Ayoola et al., 2023). 

Efforts to control measles have historically relied 

on a combination of strategies, including 

vaccination campaigns, early diagnosis, and 

public health interventions (Ayoola et al., 2022; 

Castillo et al., 2018). These measures encounter 

challenges when disease incidence exceeds the 

healthcare system's treatment capacity. In such 

scenarios, vaccination emerges as a critical tool 

for reducing disease burden and preventing 

outbreaks Bhandari, 2023). This research 

scrutinizes the effectiveness of vaccination in 

settings where treatment resources are saturated. 

By integrating a saturated treatment function, we 

seek to illuminate the intricate interplay between 

vaccination and treatment under these demanding 

circumstances of age-structured base measles 

disease.  
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2. Materials and method 

2.1. Model formulation 

A deterministic mathematical model based on the 

epidemiological status of population of members 

that describes the dynamics of measles 

transmission. The total population N (t) divides 

into some compartmental classes for a disease-

modification as sub-population into susceptible S 

(t) for children and adult, exposed E (t), infected 

I (t), and recovered R (t) individuals. The 

migration/recruitment into the sub-populations 

that are vulnerable are measured at a rate of A , 

while transmission of measles is at d . The 

respective classes are subjected to natural death

 , exposed individuals have disease-induced 

mortality rate . Population of vulnerable 

individuals are  infected at   whose fraction are 

fats developing in infection at a rate of   and 

infected individuals recover at a rate of  .The set 

of individual children that are healed from the 

disease class through growth/development are 

converted to adults by m  and each proportion of 

these successively vaccinated individuals are 

done by birth at v . The model formulation flow 

therefore depicts is given by fig.1. 

 
Figure 1. Schematic flow of model description. 

𝑑𝑆𝑐
𝑑𝑡

= 𝐴(1 − 𝑣)𝑁 −
(1 − 𝜌)𝑆𝑐𝐼

𝑁
− 𝜌𝛽𝑆𝑐𝐼 − (𝑚

+ 𝜇)𝑆𝑐  

𝑑𝑆𝑎

𝑑𝑡
= 𝑚𝑆𝑐 −

(1−𝜌)𝑆𝑎𝐼

𝑁
− 𝜌𝛽𝑆𝑎𝐼 − 𝜇𝑆𝑎       (1) 

𝑑𝐸

𝑑𝑡
=
(1 − 𝜌)𝛽(𝑆𝑐 + 𝑆𝑎)𝐼

𝑁
− (𝛿 + 𝜇)𝐸 

𝑑𝐼

𝑑𝑡
= 𝛿𝐸 + 𝜌𝛽(𝑆𝑐 + 𝑆𝑎)𝐼 − (𝛾 + 𝜇 + 𝑑)𝐼 

𝑑𝑅

𝑑𝑡
= 𝐴𝑣𝑁 + 𝛾𝐼 − 𝜇𝑅

  
 

Subject to the following initial conditions  

Consider0 ≤ 𝑣 ≤ 1and 10  m . When 

0, =mv , susceptible population are not 

vaccinated as 

𝑆𝑐(0) = 𝑠0, 𝑆𝑎 = 𝑠0, 𝐸(0) = 𝑒0, 𝐼(0) =
         𝑖0, 𝑅(0) = 𝑟0 ≥ 0     (2) 

2.1.1. The existence of the model solution 

The parameters of the system (1), which 

characterizes an epidemic disease in a human 

population, ought to be nonnegative. Showing 

that the state variables in the model are 

nonnegative is crucial to ensuring that the system 

of differential equations in (1) is well-posed both 

mathematically and epidemiologically. When the 

system begins with nonnegative beginning 

conditions, system (1) is well-posed. 𝑆𝑐(0) =
𝑠0, 𝑆𝑎(0) = 𝑠0, 𝐸(0) = 𝑒0, 𝐼(0) = 𝑖0, 𝑅(0) =
𝑟0 ≥ 0; In that case, the solutions of system (1) 

will persist in being nonnegative throughout their 

evolution, 𝑡 > 0 and that these positive solutions 

are bounded. We thus apply the following 

theorems. 

Theorem 1  

All solutions of system (1) are bounded. 

Proof: 

Consider the total population  

𝑁(𝑡) = 𝑆𝑐(𝑡)  + 𝑆𝑎(𝑡)+ E(𝑡) + I(𝑡) + R(𝑡)  (3) 

The variation in the total population concerning 

time is given by: 

𝑑𝑁(𝑡)

𝑑𝑡
=

𝑑

𝑑𝑡
(𝑆𝑐(𝑡)  + 𝑆𝑎(𝑡)+ E(𝑡) + I(𝑡) + R(𝑡)) (4) 

    Such that: 
𝑑𝑁(𝑡)

𝑑𝑡
= 𝐴 − 𝜇(𝑆 + 𝑉 + 𝐸 + 𝐼 + 𝑅) − 𝛿𝐼 ⇒

𝑑𝑁(𝑡)

𝑑𝑡
≤ 𝐴 − 𝜇𝑁at 𝑑 = 0 
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Thus, it is obtained that 
𝑑𝑁(𝑡)

𝑑𝑡
+ 𝜇𝑁 ≤ 𝐴, leading to 𝑁(𝑡)𝑒𝜇𝑡 =

𝐴

𝜇
𝑒𝜇𝑡 + 𝑐 (5) 

Initially,  

𝑁(0) =
𝐴

𝜇
+ 𝑐𝑒−𝜇(0), this yields 

𝑐 = 𝑁(0) −
𝐴

𝜇
    (6) 

Thus, substituting (6) into (5) as time 

progressively increases yields: 

𝑙𝑖𝑚
𝑡→∞

𝑁(𝑡) ≤ 𝑙𝑖𝑚
𝑡→∞

[
𝐴

𝜇
+ (𝑁(0) −

𝐴

𝜇
) 𝑒−𝜇𝑡] =

𝐴

𝜇
     (7)                   

      

If so 𝑁(0) ≤
𝐴

𝜇
, then 𝑁(𝑡) ≤

𝐴

𝜇
.   This is a positive 

invariant set under the flow described by (2) so 

that no solution path leaves through any boundary 

ℜ+
5

. Hence, it is sufficient to consider the 

dynamics of the model in the domainℜ+
5

. In this 

region the model can be considered has been 

mathematically and epidemiologically well-

posed. 

This shows that the total population 𝑁(𝑡), and the 

subpopulation 𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡), 𝑅(𝑡) of the model 

are bounded and is a unique solution. Hence, its 

applicability to study physical systems is feasible. 

2.1.2. Positivity and boundedness ℜ+
5

 

Theorem 2 

Given that the𝑆𝑐(0) = 𝑠0 > 0, 𝑆𝑎(0) = 𝑠0 >
0, 𝐸(0) = 𝑒0 > 0, 𝐼(0) = 𝑖0 > 0, 𝑅(0) = 𝑟0 > 0, 

then the solutions 𝑆𝑐(𝑡), 𝑆𝑎(𝑡), 𝐸(𝑡), 𝐼(𝑡), 𝑅(𝑡)of 

the system (1) will always be nonnegative. 

Consider the compartment of the system of 

equations for case (1) on the population, as 

obtained. 

Proof: 

Let: 𝛱 = {(𝑆𝑐(𝑡), 𝑆𝑎(𝑡), 𝐸(𝑡), 𝐼(𝑡), 𝑅(𝑡)) ∈

                                ℜ+
5 : 𝑁(𝑡) ≤

𝐴

𝜇
}   (8) 

   

and 𝑓𝑖 , 𝑖 = 1,2. . . .5where f is a constant. 

𝑓1 = 𝐴(1 − 𝑣)𝑁 −
(1 − 𝜌)𝑆𝑐𝐼

𝑁
− 𝜌𝛽𝑆𝑐𝐼 − (𝑚 + 𝜇)𝑆𝑐 

𝑓2 = 𝑚𝑆𝑐 −
(1 − 𝜌)𝑆𝑎𝐼

𝑁
− 𝜌𝛽𝑆𝑎𝐼 − 𝜇𝑆𝑎  

𝑓3 =
(1 − 𝜌)𝛽(𝑆𝑐 + 𝑆𝑎)𝐼

𝑁
− (𝛿 + 𝜇)𝐸 

𝑓4 = 𝛿𝐸 + 𝜌𝛽(𝑆𝑐 + 𝑆𝑎)𝐼 − (𝛾 + 𝜇 + 𝑑)𝐼 

    𝑓5 = 𝐴𝑣𝑁 + 𝛾𝐼 + 𝜇𝑅 ,                   (9) 

Then, 

|
𝜕𝑓1
𝑑𝑆𝑐

| = |(1 − 𝜌) + 𝑚 + 𝜇)| < ∞, |
𝜕𝑓1
𝑑𝑆𝑎

| = |0| ∞, 

 |
𝜕𝑓1

𝑑𝐸
| = |0| < ∞, |

𝜕𝑓1

𝑑𝐼
| = |(1 − 𝜌) + 𝜌𝛽| < ∞, |

𝜕𝑓1

𝑑𝑅
| = |0| < ∞ 

 |
𝜕𝑓2

𝑑𝑆𝑐
| = |𝑚| < ∞, |

𝜕𝑓2

𝑑𝑆𝑎
| = |(1 − 𝜌 + 𝜌𝛽 + 𝜇| , |

𝜕𝑓2

𝑑𝐸
| =   |0| <

∞, |
𝜕𝑓2

𝑑𝐼
| = |(1 − 𝜌) + 𝜌𝛽| < ∞, |

𝜕𝑓2

𝑑𝑅
| = |0| < ∞   

|
𝜕𝑓3
𝑑𝑆𝑐

| = |(1 − 𝜌)𝛽| < ∞, |
𝜕𝑓3
𝑑𝑆𝑎

| = |(1 − 𝜌)𝛽|∞, 

|
𝜕𝑓3
𝑑𝐸
| = |(𝛿 + 𝜇)| < ∞, |

𝜕𝑓3
𝑑𝐼
| = |(1 − 𝜌)𝛽| < ∞, |

𝜕𝑓3
𝑑𝑅
| = |0| < ∞ 

|
𝜕𝑓4
𝑑𝑆𝑐

| = |𝜌𝛽| < ∞, |
𝜕𝑓4
𝑑𝑆𝑎

| = |𝜌𝛽| < ∞, |
𝜕𝑓4
𝑑𝐸
| = |𝛿| < ∞, 

|
𝜕𝑓4

𝑑𝐼
| = |𝜌𝛽 + (𝑑 + 𝜇 + 𝛾)| < ∞, |

𝜕𝑓4

𝑑𝑅
| = |0| < ∞ 

  

|
𝜕𝑓5
𝑑𝑆𝑐

| = |0| < ∞, |
𝜕𝑓5
𝑑𝑆𝑎

| = |0| < ∞, |
𝜕𝑓5
𝑑𝐸
| = |0| < ∞, 

|
𝜕𝑓5

𝑑𝐼
| = |𝛾| < ∞, |

𝜕𝑓5

𝑑𝑅
| = |𝜇| < ∞   (10) 

Equation (10) demonstrates the presence of 

system (1) within the positive quadrant, leading it 

to ultimately enter and persist in the attracting 

subset Π. Consequently, the set comprises both 

the local and global attractors of system (1). As a 

result, the set is characterized as compact, 

positively invariant, and attractively influential 

with respect to the system. The solution of the 

model is bounded, well-posed and 

epidemiologically and mathematical represented. 

2.1.3. Measles-non-Infected Equilibrium State  

The measles-non-infected equilibrium state 

represents a scenario in which the system is 

entirely free from the contagious disease. 

Consequently, when the number of infected 

individuals (I), it follows that the numbers of 

exposed (E) and recovered (R), i.e. 𝐼 = 𝐸 = 0. In 
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this context, the solution for the measles-free 

equilibrium point can be derived as follows:  

𝑑𝑆𝑐

𝑑𝑡
=

𝑑𝑆𝑎

𝑑𝑡
=

𝑑𝐸

𝑑𝑡
=

𝑑𝐼

𝑑𝑡
=

𝑑𝑅

𝑑𝑡
= 0        (11) 

 

𝐴(1 − 𝑣)𝑁 −
(1 − 𝜌)𝑆𝑐𝐼

𝑁
− 𝜌𝛽𝑆𝑐𝐼 − (𝑚 + 𝜇)𝑆𝑐 = 0 

𝑚𝑆𝑐 −
(1 − 𝜌)𝑆𝑎𝐼

𝑁
− 𝜌𝛽𝑆𝑎𝐼 − 𝜇𝑆𝑎 = 0 

(1 − 𝜌)𝛽(𝑆𝑐 + 𝑆𝑎)𝐼

𝑁
− (𝛿 + 𝜇)𝐸 = 0 

𝛿𝐸 + 𝜌𝛽(𝑆𝑐 + 𝑆𝑎)𝐼 − (𝛾 + 𝜇 + 𝑑)𝐼 = 0 

    𝐴𝑣𝑁 + 𝛾𝐼 + 𝜇𝑅 = 0    (12) 

At no outbreak of measles the disease class 

subjected as 𝑡 = 0, from (12),  

𝐴𝑣𝑁 + 𝛾𝐼 + 𝜇𝑅 = 0,𝑅 =
𝐴𝑣𝑁

𝜇
. Similarly,  

𝑆𝑐 =
𝐴𝑁(1−𝑣)

(𝑚+𝜇)
where 𝑆𝑎 =

𝑚[𝐴(1−𝑣)𝑁]

𝜇(𝑚+𝜇)
 

Thus, the disease-free equilibrium 

yields: (𝑆𝑐 , 𝑆𝑎 , 𝐸, 𝐼, 𝑅) = (𝑆𝑐 =
𝐴𝑁(1−𝑣)

(𝑚+𝜇)
, 𝑆𝑎 =

𝑚[𝐴(1−𝑣)𝑁]

𝜇(𝑚+𝜇)
, 𝐸0 = 0, 𝐼0 = 0, 𝑅0 =

𝐴𝑣𝑁

𝜇
)      (13) 

2.1.4. Steady-State Prevalence 

Measles prevalence on (𝑆𝑐 , 𝑆𝑎, 𝐸, 𝐼, 𝑅) at 𝑡 ≠ 0, 

highlighting its dynamic nature.to measure vital 

role on its outbreaks and protect the population. 

Let 𝐸𝑒 = (𝑆𝑐
∗, 𝑆𝑎

∗, 𝐸∗, 𝐼∗, 𝑅∗)  at steady state 𝐼 ≠
0. Consider the system of equation in (1) the 

equilibrium points are:  

𝑆𝑐
∗ =

𝐴(1−𝑣)𝜇2√(1−𝑣)(𝑑+𝛾+𝜇)𝑣(𝜇+𝛾+𝛿)𝛽𝑣𝑁(1−𝑣)2[𝐴𝑣𝑁+(𝜇+𝛾+𝛿)𝛽∗]+𝑣[𝐴(𝜇+𝛾+𝛿)𝐴𝑣𝛾𝛽𝑖+𝛿)]

𝜇(𝑑+𝜇)[(𝜇+𝛾+𝛿)(𝜇+𝛾+𝛿)+(1−𝑣)]
  

𝑆𝑎
∗ =

𝐴(1 − 𝑣)𝑁𝛽(𝛽𝐴(𝑁 − 1)𝜌 + 𝜇2 + (𝛾 + 𝑑)𝜇 + (𝑁𝜌 + 𝜇(𝑑 + 𝛾 + 𝜇))

𝜇𝛽𝐴(𝜇 + 𝛾 + 𝛿)[√(1 − 𝑣)(𝑑 + 𝜇)(𝜇 + 𝛾 + 𝛿) + (1 − 𝜀)]
, 

𝐸∗ =
𝛽𝜂𝐴(1 − 𝜀) + 𝜌𝑣(𝛿 + 𝛾 + 𝜇)2

𝜌𝛽𝐴√(𝑑 + 𝑣 + 𝜇)(𝛿 + 𝜇) + (1 − 𝑣)𝜌𝑣𝛽𝐴
 

𝐼∗ =
(1−𝑣)][𝐴𝑣𝛽(𝑑+𝜇)+(𝜇+𝛾+𝛿)𝜌2]

[𝜇2(𝑑+𝜇)+(1−𝑣)]
−

√(𝑑+𝜇+𝛿)(𝛿+𝜇)

(1−𝑣)−1(𝛾+𝜇+𝛿)𝐴𝜌
    (14) 

𝑅∗ = (1 − 𝑣)−1√
[(𝛾 + 𝜇 + 𝛿)𝜎𝛾 + 𝑑]𝐴2𝛽𝑣 + 𝜌𝑣2

(𝑑 + 𝜇 + 𝛿)(𝛾 + 𝜇 + 𝛿)(𝑑 + 𝜇 + 𝛿)

2.1.5. The disease threshold 𝑅∗ 

The disease threshold/basic reproduction number, 

denoted as 𝑅∗, measures the potential for new 

measles infections from a single carrier or 

infected individual in a population with no prior 

infections. To determine the system (1), we apply 

the next-generation method, focusing on the 

infectious classes E and I. This involves 

calculating the F and V matrices, representing the 

rates of new infections and transitions into and 

out of the infected compartment, respectively. 

From the equations in the system (1), we derive 

these matrices as follows. 𝑅∗ = 𝜌(𝑀 − 𝜆𝐼) where 

𝑀 = 𝐹 × 𝑉−1and  is the spectral radius of the 

matrix |𝐺 − 𝜆𝐼|. 
From the system of equation (1) it is obtained for 

matrix 𝐹and 𝑉: 

𝐹𝑖 = (
𝜕𝑓𝑖(𝑥𝑖)

𝜕𝑥𝑗
),𝑉𝑖 = (

𝜕𝜈𝑖(𝑥𝑖)

𝜕𝑥𝑗
)          (15) 
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Such that 

𝑓 = (
(1 − 𝜌)𝛽(𝑆𝑐 + 𝑆𝑎)

0
) And 𝑣 = (

(𝛿 + 𝜇)𝐸

−𝛿𝐸 − [𝜌𝛽(𝑆𝑐 + 𝑆𝑎) + (𝛾 + 𝜇 + 𝑑)]𝐼
)           (16) 

Then,  

𝐹 = (0
(1 − 𝜌)𝛽(𝑆𝑐 + 𝑆𝑎)

𝑁
0 0

)𝑉 = (
(𝛿 + 𝜇) 0
−𝛿 𝜌𝛽(𝑆𝑐 + 𝑆𝑎) + (𝛾 + 𝜇 + 𝑑)

) 

𝑉−1 = (

(𝑑+𝜇+𝛾)−𝜌𝛽(𝑆𝑐+𝑆𝑎)

(𝑑+𝜇+𝛾)(𝑑+𝜇)−𝜌𝛽(𝑆𝑐+𝑆𝑎)

𝛿

(𝑑+𝜇+𝛾)(𝑑+𝜇)−𝜌𝛽(𝑆𝑐+𝑆𝑎)

0
(𝑑+𝜇)

(𝑑+𝜇+𝛾)(𝑑+𝜇)−𝜌𝛽(𝑆𝑐+𝑆𝑎)

)               (17) 

Thus, the 𝑅∗ is obtained as: 

𝑅∗ = (
0

(1 − 𝜌)𝛽(𝑆𝑐 + 𝑆𝑎)

𝑁
0 0

)

(

 
 

(𝑑 + 𝜇 + 𝛾) − 𝜌𝛽(𝑆𝑐 + 𝑆𝑎)

(𝑑 + 𝜇 + 𝛾)(𝑑 + 𝜇) − 𝜌𝛽(𝑆𝑐 + 𝑆𝑎)

𝛿

(𝑑 + 𝜇 + 𝛾)(𝑑 + 𝜇) − 𝜌𝛽(𝑆𝑐 + 𝑆𝑎)

0
(𝑑 + 𝜇)

(𝑑 + 𝜇 + 𝛾)(𝑑 + 𝜇) − 𝜌𝛽(𝑆𝑐 + 𝑆𝑎))

 
 

 

 

             𝑅∗ =
𝛽(1−𝜌)𝐴((1−𝑣)𝑁)𝛿

(𝛿+𝜇)[(𝜇𝑑+𝜇2+𝜇𝛾)−𝜌𝛽(𝐴(1−𝑣)𝑁]
    (18)

                

 

2.1.6. Quantitative Analysis of R  

Here, we conduct a quantitative analysis of R  to assess its metric progression concerning each 

intervention method. By excluding the values of intervention parameters, we asses equation (18) using 

the baseline values provided in Table 1, yielding equation (18), subsequently resulting in equations (19) 

through (23). The outcomes of these calculations are presented in Table 2. 

𝑅𝜀 =
0.1(1-𝜌)(0.542(0.018+𝑣)𝜌1+0.056+(0.42)(1-𝑣)𝛽-0.09𝑑)

(0.024+0.018𝜌)(0.056+0.03𝜏))                 
   (19) 

𝑅𝜀 = 𝑓(𝜌1)|𝛾=0
𝑣=0
𝜌=0

= -1.3097𝛾+1.486          (20) 

𝑅𝜀 = 𝑓(𝜏)|𝑣=0
𝜌1=0
𝐴=0

=
0.0057

0.021𝐴+0.0856
  (21) 

𝑅𝜀 = 𝑓(𝜌2)|𝑐=0
𝜌1=0
𝜏=0

=
0.077(0.06+0.51𝜌2)

0.925+0.92𝜇
  (22) 

𝑅𝜀 = 𝑓(𝑐)|𝑣=0
𝜏=0
𝜌=0

= 1.337𝛿-1.46v    (23) 
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Table II: standalone metric of vaccination and general awareness on 𝑅𝜀 
A B C 

s/n 𝜌 𝐴 𝛿 𝑑 𝑅𝜀 𝜌 𝐴 𝛿 𝑑 𝑅𝜀 𝜌 𝐴 𝛿 𝑑 𝑅𝜀 

1 0 0 0 0 1.45938 0 0 0 0 1.45915 0 0 0 0 1.45916 

2 0.2 0 0 0 1.37330 0 0.2 0 0 1.16741 0 0 0.2 0 0.25432 

3 0.4 0 0 0 0.93382 0 0.4 0 0 0.87542 0 0 0.4 0 0.202468 

4 0.6 0 0 0 0.67123 0 0.6 0 0 0.58375 0 0 0.6 0 0.184168 

5 0.8 0 0 0 0.40856 0 0.8 0 0 0.29187 0 0 0.8 0 0.174811 

6 1.0 0 0 0 0.14591 0 1.0 0 0 0.29101 0 0 1.0 0 0.169130 

Table III: standalone metric of therapy efficacy and combine metric of all interventions on 𝑅𝜀 
A B 

s/n 𝜌 𝐴 𝛿 𝑑 𝑅𝜀 s/n 𝜌 𝐴 𝛿 𝑑 𝑅𝜀 

1 0 0 0 0 1.3635 1 0 0 0 0 1.47265 

2 0 0 0 0.2 1.9484 2 0.2 0.2 0.2 0.2 1.36305 

3 0 0 0 0.4 0.4763 3 0.4 0.4 0.4 0.4 0.98381 

4 0 0 0 0.6 0.6723 4 0.6 0.6 0.6 0.6 0.09836 

5 0 0 0 0.8 0.4484 5 0.8 0.8 0.8 0.8 0.73639 

6 0 0 0 1.0 0.1441 6 1 1 1 1 0.93411 

 

2.1.7. Asymptotic stability of the disease-free 

state  

This section examines the stability of the disease-

free state for measles by analyzing the basic 

reproduction number's impact. When the 

reproduction number is 𝑅∗ < 1, the disease 

declines, and we determine stability using a 

Jacobian matrix and a characteristic equation. 

Theorem 3 

The disease-free state of the model is locally 

asymptotically Stable 𝑅∗ < 1 meanwhile it is 

unstable if the basic reproduction 𝑅∗ > 1.  

Proof: 

Consider that the disease-free equilibrium is 

obtained as the Jacobian matrix of the system of 

(1) is obtained and evaluated at the disease free-

state using the linearization method obtaining that 
|𝐽𝐸 − 𝜆𝐼| = 0. The resulting matrix from the 

compartments of the model formulation is 

obtained from respective derivatives of the state 

parameters as: 
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𝐽(𝐸1) =

(

 
 
 
 
 

−(𝑚 + 𝜇) 0 0 − [
(1−𝜌)𝛽𝐴𝑁(1−𝑣)

𝑁(𝑚+𝜇)
+

𝜌𝛽𝐴𝑁𝑚(1−𝑣)

𝜇(𝑚+𝜇)
] 0

𝑚 −𝜇 0 [
(1−𝜌)𝑚𝐴𝑁(1−𝑣)

𝑁𝜇(𝑚+𝜇)
+

𝛽𝐴𝑁(1−𝑣)

𝑁(𝑚+𝜇)
] 0

0 0 −(𝛿 + 𝜇) [
𝜌𝛽𝐴𝑁(1−𝑣)

(𝑚+𝜇)
+

𝐴𝑁𝑚(1−𝑣)

𝜇(𝑚+𝜇)
] 0

0 0 𝛿 −(𝑑 + 𝜇 + 𝛾) 0
0 0 0 𝛾 −𝜇)

 
 
 
 
 

           (24) 

 

Computing for the eigenvalues,  |𝐽𝐸1 − 𝜆𝑖𝐼| = 0 for each respective 𝜆𝑖 , 𝑖 = 1. . .5 

 

|

|

−(𝑚 + 𝜇) − 𝜆 0 0 − [
(1−𝜌)𝛽𝐴𝑁(1−𝑣)

𝑁(𝑚+𝜇)
+

𝜌𝛽𝐴𝑁𝑚(1−𝑣)

𝜇(𝑚+𝜇)
] 0

𝑚 −𝜇 − 𝜆 0 [
(1−𝜌)𝑚𝐴𝑁(1−𝑣)

𝑁𝜇(𝑚+𝜇)
+

𝛽𝐴𝑁(1−𝑣)

𝑁(𝑚+𝜇)
] 0

0 0 −(𝛿 + 𝜇) − 𝜆 [
𝜌𝛽𝐴𝑁(1−𝑣)

(𝑚+𝜇)
+

𝐴𝑁𝑚(1−𝑣)

𝜇(𝑚+𝜇)
] 0

0 0 𝛿 −(𝑑 + 𝜇 + 𝛾) − 𝜆 0
0 0 0 𝛾 −𝜇 − 𝜆

|

|

 = 0

= 0

  

as obtained: 

𝜆1 = −(𝑚 + 𝜇), 𝜆 = −𝜇, 𝜆 = −(𝑑 + 𝜇 + 𝛾), |
−(𝛿 + 𝜇) [

𝜌𝛽𝐴𝑁(1−𝑣)

(𝑚+𝜇)
+
𝐴𝑁𝑚(1−𝑣)

𝜇(𝑚+𝜇)
]

𝛿 (𝑑 + 𝜇 + 𝛾)
| , 𝜆3 = − [

𝜌𝛽𝐴𝑁(1−𝑣)

(𝑚+𝜇)
+
𝐴𝑁𝑚(1−𝑣)

𝜇(𝑚+𝜇)
] ,

𝜆4 = −(𝛿 + 𝜇)               (25)

}

  

The eigenvalues are negatively invariant in the region ℜ+
5

for each 𝜆𝑖 < 0 are hence the system of (20) is 

locally asymptotically stable. 

2.1.8. Regional Resilience of the Persistent  

Equilibrium 

Theorem 4 

The regional resilience of the persistent equilibrium of the model is locally asymptotically stable 

whenever 𝑅∗ < 1and unstable respectively when each of its eigenvalues of the matrix is 𝜆 > 0. 

Proof: 

Suppose,𝑆𝑐 = 𝑥 + 𝑆𝑐
∗, 𝑆𝑎 = 𝑦 + 𝑆𝑎

∗, 𝐸 = 𝑧 + 𝐸∗, 𝐼 = 𝑝 + 𝐼∗, 𝑅 = 𝑞 + 𝑅∗  

Linearizing equation (1), is then obtained as  

𝑑𝑥

𝑑𝑡
= −(1 − 𝜌)𝛽𝑥𝑝 − 𝜌𝛽𝑥𝑝 − (𝑚 − 𝜇)𝑥 + higher order +  nonlinear terms...

𝑑𝑦

𝑑𝑡
= 𝑚𝑥 − (1 − 𝜌)𝛽𝑦𝑝 − 𝜌𝛽𝑦𝑝 − 𝜇𝑦 + higher order +  nonlinear terms...

𝑑𝑧

𝑑𝑡
= (1 − 𝜌)𝛽𝑥𝑝 + 𝑦𝑝 − (𝛿 + 𝜇)𝑧 + higher order +  nonlinear terms...

𝑑𝑝

𝑑𝑡
= 𝛿𝑧 + 𝜌𝛽(𝑥 + 𝑦)𝑝 − (𝑑 + 𝜇 + 𝛾)𝑝 + higher order +  nonlinear terms...

𝑑𝑞

𝑑𝑡
= 𝛾𝑝 − 𝜇𝑞 + Higher order +  nonlinear terms... }

 
 
 

 
 
 

       (26) 
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Jacobian matrix of the system of (26), 

 

(

 
 
 
 

− [
𝜌𝛽𝐴𝑚𝑁(1−𝑣)

𝜇(𝑚+𝜇)
] 0 0 −

(1−𝜌)𝛽𝑆𝑐

𝑁
+ 𝜌𝑆𝑐 0

𝑚 − [
(1−𝜌)𝛽𝑆𝑐

𝑁
+ 𝜌𝑆𝑐 + 𝐼𝜇] 0

(1−𝜌)𝛽𝑆𝑎

𝑁
+ 𝜌𝑆𝑎 0

(1 − 𝜌)
𝛽𝐼

𝑁
(1 − 𝜌)

𝛽𝐼

𝑁
−(𝛿 + 𝜇)

(1−𝜌)𝛽𝑆𝑐

𝑁
+

𝛽𝑆𝑎

𝑁
0

𝜌𝛽𝐼 𝜌𝛽 𝛿 −[(𝑑 + 𝜇 + 𝛾) − 𝜌𝛽(𝑆𝑎 + 𝑆𝑐)] 0
0 0 0 𝛾 −𝜇)

 
 
 
 

 (27)  

 

(

 
 

−[(1 − 2𝜌𝛽𝑝 − 𝑚 − 𝜇)] 0 0 −2𝜌𝛽 0

𝑚 −[(1 − 2𝜌𝛽𝑝 − 𝜇)] 0 2𝜌𝛽 0

(1 − 𝜌)𝛽𝑝 𝑝 −(𝛿 + 𝜇) 0 0

𝜌𝛽 𝜌𝛽𝑝 𝛿 −[(𝑑 + 𝜇 + 𝛾) − 𝜌𝛽(𝑥 + 𝑦)] 0
0 0 0 𝛾 −𝜇)

 
 

 

 

 The resulting eigenvalue of the above matrix is obtained as:
 

([
𝜌𝛽𝐴𝑚𝑁(1−𝑣)

𝜇(𝑚+𝜇)
] + [

(1−𝜌)𝛽𝑆𝑐

𝑁
+ 𝜌𝛽 + 𝜇] + (𝛿 + 𝜇) + (𝑑 + 𝜇 + 𝛾) − 𝜌𝛽(𝑆𝑐 + 𝑆𝑎)] + 𝜇)    (28) 

The trace of 𝐽(𝐸𝑒) < 0. Thus, the Jacobian matrix 𝐽(𝐸𝑒) has eigenvalues that contains negative root 

parts. Therefore, we conclude that the endemic equilibrium point is locally asymptotically stable. 

Hence, the persistent resilience of the model in a region are asymptotically stable. 

2.1.9. Global stability of disease-free equilibrium 

We employ Lyapunov's function approach, to establish the global asymptotic stability of the model 

solution for equation (1) at the disease-free equilibrium, utilizing the Lyapunov algorithm 

𝛷(𝑡, 𝑆𝑐 , 𝑆𝑎 , 𝐸, 𝐼, 𝑅) = 𝐶1𝐼1 + 𝐶2𝐼2       (29) 

 
𝑑𝛷

𝑑𝑡
= 𝐶1𝐼1

• + 𝐶2𝐼2
• = 𝐶1 (

(1 − 𝜌)𝛽(𝑆𝑐𝐼2 + 𝑆𝑎𝐼2)

𝑁
− (𝛿 + 𝜇)𝐼1) + 𝐶2(𝛿𝐼1 + 𝜌𝛽(𝑆𝑐𝐼2 + 𝑆𝑎𝐼2) − (𝑑 + 𝛾 + 𝜇)𝐼2) 

= 𝐶1
(1 − 𝜌)𝛽𝑆𝑐𝐼2

𝑁
+ 𝐶1

(1 − 𝜌)𝛽𝑆𝑎𝐼2
𝑁

− 𝐶1(𝛿 + 𝜇)𝐼1 + 𝐶2𝛿𝐼1 + 𝐶2𝜌𝛽(𝑆𝑐𝐼2 + 𝑆𝑎𝐼2) − 𝐶2(𝑑 + 𝛾 + 𝜇)𝐼2 

≤ 𝐶1 (
(1 − 𝜌)𝛽𝑆𝑐𝐼2

𝑁
+
(1 − 𝜌)𝛽𝑆𝑎𝐼2

𝑁
− (𝛿 + 𝜇)) 𝐼1 + 𝐶2(𝛿𝐼1 + 𝜌𝛽(𝑆𝑐𝐼2 + 𝑆𝑎𝐼2) − (𝑑 + 𝛾 + 𝜇))𝐼2 

𝑆0 =
𝜋𝑁(1 − 𝜀)

((1 − 𝜀)(𝜆 + 𝑣 + 𝜇) + 𝜔)
, 𝑉0 =

𝜋𝑁

((𝜀 − 1)(𝜆 + 𝑣 + 𝜇) + 𝜔)
, 𝐶1 =

(𝜎 + 𝜇 + 𝛾𝑐)

(𝜎 + 𝜇 + 𝛾𝑐)
, 𝐶2 

 

= (
(𝛾𝑖 + 𝜇 + 𝛿)(1 + 𝛼)

𝜏(𝛾𝑖 + 𝜇 + 𝛿)(1 + 𝛼)
) 
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𝑑𝛷

𝑑𝑡
≤ 𝐶1 (

𝜋𝜏(𝛼 + 1)(1 − 𝜀) + √𝜋𝜂(1 − 𝜀)𝛽 + (𝜔𝜅 + 𝑣 + 𝜇)

((1 − 𝜀)2𝛼(𝜆 + 𝑣 + 𝜇) + 𝜏𝜔)(𝜎 + 𝛾𝑒 + 𝜇)(𝛿 + 𝛾𝑖 + 𝜇)
−
(𝜎 + 𝜇 + 𝛾𝑐)

(𝜎 + 𝜇 + 𝛾𝑐)
) 𝐼

− 𝐶2 ((
(𝛾𝑖 + 𝜇 + 𝛿)(1 + 𝛼)

𝜏(𝛾𝑖 + 𝜇 + 𝛿)(1 + 𝛼)
) − (

(𝛾𝑖 + 𝜇 + 𝛿)(1 + 𝛼)

𝜏(𝛾𝑖 + 𝜇 + 𝛿)(1 + 𝛼)
)) 

𝑑𝛷

𝑑𝑡
≤ 𝜓(𝑅0 − 1)  (30)   

     
 

It is pertinent to note that when at 𝑡 → ∞and 𝐶1 < 1. Substituting into the model system of equation (18) 

reveals that, based on LaSalle’s invariance principle 
𝑑𝛷

𝑑𝑡
= 0, is globally asymptotically stable whenever 

𝑅∗ > 1 

2.1.10. Global stability for endemic equilibrium 

Theorem 5 

The model system of equation (1) has no periodic orbits. 

Proof: 

We employ the concept of Dulac’s criterion. Let 𝑋 = (𝑆, 𝐼, 𝐻, 𝑅, 𝑃) define the Dulac’s function 𝐺 =
1

𝑆𝐼
. 

The following system of equations are obtained; 

𝐺
𝑑𝑆𝑐
𝑑𝑡

=
1

𝑆𝐼
{𝐴(1 − 𝑣)𝑁 −

(1 − 𝜌)𝑆𝑐𝐼

𝑁
− 𝜌𝛽𝑆𝑐𝐼 − (𝑚 + 𝜇)𝑆𝑐} 

𝐺
𝑑𝑆𝑎
𝑑𝑡

=
1

𝑆𝐼
{𝑚𝑆𝑐 −

(1 − 𝜌)𝑆𝑎𝐼

𝑁
− 𝜌𝛽𝑆𝑎𝐼 − 𝜇𝑆𝑎} 

𝐺
𝑑𝐸

𝑑𝑡
=

1

𝑆𝐼
{
(1−𝜌)𝛽(𝑆𝑐+𝑆𝑎)𝐼

𝑁
− (𝛿 + 𝜇)𝐸}      (31) 

𝐺
𝑑𝐼

𝑑𝑡
=
1

𝑆𝐼
{𝛿𝐸 + 𝜌𝛽(𝑆𝑐 + 𝑆𝑎)𝐼 − (𝛾 + 𝜇 + 𝑑)𝐼} 

𝐺
𝑑𝑅

𝑑𝑡
=
1

𝑆𝐼
{𝐴𝑣𝑁 + 𝛾𝐼 − 𝜇𝑅} 

The above system of equations results to:  

𝐺
𝑑𝑆𝑐
𝑑𝑡

= {
𝐴(1 − 𝑣)𝑁

𝑆𝐼
− [(1 − 𝜌) + 𝜌𝛽] −

(𝑚 + 𝜇)

𝐼
} 

𝐺
𝑑𝑆𝑎
𝑑𝑡

= {
𝑚

𝐼
−
(1 − 𝜌)

𝑁
− 𝜌𝛽 −

𝜇

𝐼
} 

𝐺
𝑑𝐸

𝑑𝑡
= {

(1−𝜌)𝛽

𝑁
−

(𝛿+𝜇)𝐸

𝑆𝐼
}       (32) 
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𝐺
𝑑𝐼

𝑑𝑡
= {

𝛿𝐸

𝑆𝐼
+ 𝜌𝛽 −

(𝛾 + 𝜇 + 𝑑)

𝑆
} 

𝐺
𝑑𝑅

𝑑𝑡
= {

𝐴𝑣𝑁

𝑆𝐼
+
𝛾

𝑆
−
𝜇𝑅

𝑆𝐼
}

At 0t  orbital resolution of the system of equations is given by 
𝑑(𝐺𝑋)

𝑑𝑡
 as obtained below. 

𝑑(𝐺𝑋)

𝑑𝑡
=

𝜕

𝜕𝑆𝑐
{𝐺
𝑑𝑆𝑐
𝑑𝑡
} +

𝜕

𝜕𝑆𝑎
{𝐺
𝑑𝑆𝑎
𝑑𝑡
} +

𝜕

𝜕𝐸
{𝐺
𝑑𝐸

𝑑𝑡
} +

𝜕

𝜕𝐼
{𝐺
𝑑𝐼

𝑑𝑡
} +

𝜕

𝜕𝑅
{𝐺
𝑑𝑅

𝑑𝑡
} 

𝑑(𝐺𝑋)

𝑑𝑡
=

𝜕

𝜕𝑆𝑐
{
𝐴(1 − 𝑣)𝑁

𝑆𝐼
− [(1 − 𝜌) + 𝜌𝛽] −

(𝑚 + 𝜇)

𝐼
} +

𝜕

𝜕𝑆𝑎
{
𝑚

𝐼
−
(1 − 𝜌)

𝑁
− 𝜌𝛽 −

𝜇

𝐼
} 

                 +
𝜕

𝜕𝐸
< 0 {

(1 − 𝜌)𝛽

𝑁
−
(𝛿 + 𝜇)𝐸

𝑆𝐼
} +

𝜕

𝜕𝐼
{
𝛿𝐸

𝑆𝐼
+ 𝜌𝛽 −

(𝛾 + 𝜇 + 𝑑)

𝑆
} +

𝜕

𝜕𝑅
{
𝐴𝑣𝑁

𝑆𝐼
+
𝛾

𝑆
−
𝜇𝑅

𝑆𝐼
} 

𝑑(𝐺𝑋)

𝑑𝑡
= {−

𝐴(1 − 𝑣) + [(1 − 𝜌) + 𝜌𝛽] + (𝑚 + 𝜇)

𝑆𝐼
} + {−

𝑚 + (1 − 𝜌) − (𝜌𝛽 + 𝜇)

𝐼
} 

              + {−
(1−𝜌)𝛽+((𝛿+𝜇))

𝐼
} + {−

𝛿+𝜌𝛽+(𝛾+𝜇+𝑑)

𝑆𝐼
} + {−

𝐴𝑣+𝛾−𝜇

𝑆𝐼
}  (33) 

𝑑(𝐺𝑋)

𝑑𝑡
= −{

𝐴(1−𝑣)+[(1−𝜌)+𝜌𝛽]+(𝑚+𝜇)

𝑆𝐼
+
𝑚+(1−𝜌)−(𝜌𝛽+𝜇)

𝐼

+
(1−𝜌)𝛽+(𝛿+𝜇)

𝐼
+
𝛿+𝜌𝛽+((𝛾+𝜇+𝑑))

𝑆𝐼
+
𝐴𝑣+𝛾−𝜇

𝑆𝐼

}   (34) 

𝑑(𝐺𝑋)

𝑑𝑡
= − {

𝐴(1−𝑣)+[(1−𝜌)+𝜌𝛽]+𝜎(𝑚+𝜇)+𝛾[𝑚+𝑚(1−𝜌)−

𝑣(𝜌𝛽+𝜇)]+(1−𝜌)𝛽+(𝛿+𝜇)

𝑆𝐼
} < 0

This implies that the system has no closed orbit. It 

therefore portray epidemiologically that, no 

existence of a periodic orbit which implies that 

there are fluctuations in the number of infective, 

which makes it pretty obvious that in allocation of 

resources for the control of the disease, 

vaccination will help to eradicate the rapid spread 

of measles with time. 

3. Sensitivity analysis of 𝑅∗ 

The primary aim is to assess the sensitivity of the 

basic reproduction number, by computing its 

derivative concerning all relevant parameters. 

This analysis will result in the determination of 

the normalized forward sensitivity index, denoted  

𝑅∗ =
𝛽(1 − 𝜌)𝐴((1 − 𝑣)𝑁)𝛿

(𝛿 + 𝜇)[(𝜇𝑑 + 𝜇2 + 𝜇𝛾) − 𝜌𝛽(𝐴(1 − 𝑣)𝑁] 

𝜕𝑅∗

𝜕𝛽
=

𝜕𝑅∗

𝜕𝛽
×

𝛽

𝑅∗
= 0.01206000  

𝜕𝑅0
𝜕𝑑

=
𝜕𝑅0
𝜕𝑑

×
𝑑

𝑅0
= 0.00130200 

𝜕𝑅∗

𝜕𝜌
=

𝜕𝑅∗

𝜕𝜌
×

𝜌

𝑅∗
= 1.03267370  

𝜕𝑅∗

𝜕𝛾
=

𝜕𝑅∗

𝜕𝛾
×

𝛾

𝑅∗
= 0.00130200     (35) 
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𝜕𝑅∗

𝜕𝐴
=

𝜕𝑅∗

𝜕𝐴
×

𝐴

𝑅∗
= 0.18743076  

𝜕𝑅∗
𝜕𝜇

=
𝜕𝑅∗
𝜕𝜇

×
𝜇

𝑅∗
= 0.15356728 

𝜕𝑅∗

𝜕𝑣
=

𝜕𝑅∗

𝜕𝑣
×

𝑣

𝑅∗
= 0.00001001  

𝜕𝑅∗
𝜕𝑁

=
𝜕𝑅∗
𝜕𝑁

×
𝑁

𝑅∗
= 1.00000000 

𝜕𝑅∗
𝜕𝛿

=
𝜕𝑅∗
𝜕𝛿

×
𝛿

𝑅∗
= 0.00000040 

Table 1. Sensitivity analysis and parameter 

indices 

Parameters Sensitivity indices 

𝛽       0.01206000 

𝜎  1.03267370 

𝛼   0.18743076 

𝜅   0.00001001 

𝛿   1.00000000 

𝜔     1.000201001 

Table 1 shows that the sensitivity indices of are 

positively invariant in ℜ5
+

 the sensitivity indices 

depend on the values of the each parameters of 

𝑅∗, and this brings about changes in the values 

that will affect the the behaviour of the threshold 

on the spread or vanity of measles disease. Based 

on the table, we can conclude that parameters are 

the most sensitive to the basic reproduction 

number in equation (18) of the measles model. 

Particularly, increasing the value of   will result 

in a 96.96% increase in𝑅∗, while increasing the 

value of k will lead to a 91.52% decrease in 𝑅∗.  

3.1 Numerical simulation  

Homotopy Perturbation Method (HPM) is an 

elegant and powerful method to solve linear and 

non-linear partial differential equations. As we 

know to get an exact solution of non- linear 

partial differential equation is very difficult, so  

 

any kind of perturbative approach is acceptable 

depending on its criteria. HPM provides an 

analytical solution by using the initial conditions. 

It is interesting to note that only a few terms are 

required to obtain a most accurate approximate 

solution. 

In this section, we have illustrated the basic idea 

of homotopy perturbation method to apply in non-

linear equations. Let us consider the following 

non-linear differential equation of the form. 

𝐴(𝑢) − 𝑓(𝑟) = 0, 𝑟 ∈ 𝛺  (36) 

Subject to the boundary conditions: 

𝐵 = (𝑢,
𝜕𝑢

𝜕𝑛
) = 0, 𝑟 ∈ 𝛤,   (37)

 

Where A is a general differential operator, B is a 

boundary operator, f(r) a known analytical 

function and  is the boundary of the domain 𝛺. 

In general one can divide the operation A into two 

parts: Linear and non-linear. That means  

𝐴 = 𝐿 + 𝑁
   

Where L is Linear and N is the non-linear,  

Hence, equation (3) can now be rewritten as  

𝐿(𝑢) + 𝑁(𝑢) + 𝑓(𝑟) = 0, 𝑟 ∈ 𝛺 (38)
 

By the homotopy technique, one can construct a 

homotopy in the following way 

𝑣(𝑟, 𝑝): 𝛺 × [0,1] → 𝑅
  

This satisfies 

𝐻(𝑉, 𝑃) = (1 − 𝑃)[𝐿(𝑣) − 𝐿(𝑢0)] +
𝑃[𝐴(𝑣) − 𝑓(𝑟) = 0, 𝑃 ∈ [0,1], 𝑟 ∈ 𝛺       (39)

 

Constructing a Homotopy perturbation method 

using an algorithm developed on each 

compartment of the model. We conduct the 

numerical simulation on the mathematical model 

using the concept of homotopy perturbation 

method which brings about creating the following 

correctional scheme for the model equation. 
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Table 2. Description of parameters, values, and reference 

Variable Description  

  𝑆𝑐(𝑡) Susceptible (Vulnerable Children) population 

 𝑆𝑎(𝑡) Susceptible (Vulnerable Adulthood) population 

E(t) Exposed population 

I(t) Infected population 

R(t) Recovered population 

Parameter Description Values References 

 𝑁 Total population 0.002 (Mutairu et al., 2023) 

𝑚 Conversion rate of susceptible children to adult group 0.001 (Mutairu et al., 2023) 

𝑣 The proportion of those successively vaccinated at 

birth 

0.5 (Kolawole et al., 2020) 

𝜌 Fraction of fast-developing infection cases 0.2 (Mutairu et al., 2023) 

𝛾 Rate of recovery after being infected 0.03 (Kolawole et al., 2020) 

𝜇 Natural death 1.0 (Wusu et al., 2022) 

𝛿 Disease induced death 0.0016 (Asamoah, 2018) 

𝐴 Recruitment rate 0.113 (Kolawole et al., 2023) 

𝛽 infected rate 1.0126 (Bozkurt et al., 2021) 

𝑑 Rate of transmission 0.33182 (Kolawole et al., 2020) 

(1 − 𝑝)
𝑑𝑆𝑐
𝑑𝑡

+ 𝑝 (
𝑑𝑆𝑐
𝑑𝑡

− [𝐴(1 − 𝑣)𝑁 −
(1 − 𝜌)𝑆𝑐𝐼

𝑁
− 𝜌𝛽𝑆𝑐𝐼 − (𝑚 + 𝜇)𝑆𝑐]) = 0 

(1 − 𝑝)
𝑑𝑆𝑎
𝑑𝑡

+ 𝑝 (
𝑑𝑆𝑎
𝑑𝑡

− [𝑚𝑆𝑐 −
(1 − 𝜌)𝑆𝑎𝐼

𝑁
− 𝜌𝛽𝑆𝑎𝐼 − 𝜇𝑆𝑎]) = 0 

(1 − 𝑝)
𝑑𝐸

𝑑𝑡
+ 𝑝 (

𝑑𝐸

𝑑𝑡
− [

(1−𝜌)𝛽(𝑆𝑐+𝑆𝑎)𝐼

𝑁
− (𝛿 + 𝜇)𝐸)𝐸])    (40) 

0])()([)1( =







++−++−+− IdISSE

dt

dC
p

dt

dI
p ac 

 

0][)1( =







−+−+− RIAvN

dt

dR
p

dt

dR
p 

 

The following correctional series are assumed as solutions for (1) such that  

𝑆𝑐(𝑡) = ∑𝑝𝑘𝑠𝑘(𝑡),

𝑛

𝑘=0

𝑆𝑎(𝑡) = ∑𝑝𝑘𝑣𝑘(𝑡),

𝑛

𝑘=0

𝐸(𝑡) = ∑𝑝𝑘𝑒𝑘(𝑡),

𝑛

𝑘=0

 

                      𝐼(𝑡) = ∑ 𝑝𝑘𝑖𝑘(𝑡),
𝑛
𝑘=0 𝑅(𝑡) = ∑ 𝑝𝑘𝑟𝑘(𝑡),

𝑛
𝑘=0                               (41) 
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This series converges as p tends to in each of the iterations is subjected to the initial conditions as 𝑡 → 1. 

Evaluating (32) and comparing coefficients of 𝑝𝑛 yields the following at 𝑛 = 1 

𝑑𝑆𝑜

𝑑𝑡
= 0,

𝑑𝑆𝑜

𝑑𝑡
= 0,

𝑑𝐸𝑜

𝑑𝑡
= 0,

𝑑𝐼𝑜

𝑑𝑡
= 0,

𝑑𝑅𝑜

𝑑𝑡
= 0        (42) 

Solving these equations using the initial constraints 

𝑆0(𝑡) = 𝑠0, 𝑆0(𝑡) = 𝑒0, 𝐸0(𝑡) = 𝑒0, 𝐼0(𝑡) = 𝑖0, 𝑅0(𝑡) = 𝑟0, at this initial condition, the result obtained from 

(32) is deduced as 

𝑆𝑐1(𝑡) = (𝜋 +𝑚𝑣 + 𝜅𝑟0 − 𝛾𝑠0 − (𝑣 + 𝜇)𝑠0)𝑡 

𝑆𝑎1(𝑡) = (−𝛽1𝑠0 − 𝛽2𝑣0 + 𝜇𝑣0)𝑡 

    𝐸1(𝑡) = (𝛼𝑠0𝑖0 − 𝜇𝑒0 − 𝜎𝑒0)𝑡               (43) 

𝐼1(𝑡) = (𝜎𝑒0 − 𝜇𝑖0 − 𝛿𝑖0 − 𝜌𝑖0)𝑡 

𝑅1(𝑡) = (𝜌𝑖0 − 𝜇𝑟0)𝑡 

The successive iterations of the results obtained at 𝑛 = 2 yields 

𝑠2(𝑡) =
1

2
𝑡2(

𝛼3𝑖20𝑠0 + 𝛼
2𝜇𝑖0𝑠0 + 𝛼

2𝛽1𝑖0𝑠0 − 𝛼
2𝛽2𝑖0𝑣0 − 𝛼

2𝜃𝑖0 + 𝛼𝛿𝑖0𝑠0 +

2𝛼𝜇𝑖0𝑠0 + 𝛼𝜌0𝑠0 − 𝛼𝜎𝑒0𝑠0 + 𝛼𝛽10𝑠0 + 𝜇
2𝑠0 + 2𝜇𝛽1𝑠0 − 2𝜇𝛽1𝑣0 −

𝛽1
2𝑠0 + 𝛽2𝛽1𝑠0 − 𝛽2𝛽1𝑣0 − 𝛽2

2𝑣0 − 𝜇𝜃 − 𝜃𝛽1

) 

𝑠2𝑎(𝑡) =
1

2
𝑡2 (

𝛼3𝑖20𝑠0 + 𝛼
2𝜇𝑖0𝑠0 + 𝛼

2𝛽1𝑖0𝑠0 − 𝛼
2𝛽2𝑖0𝑣0 − 𝛼

2𝜃𝑖0 +

𝛼𝛿𝑖0𝑠0 + 2𝛼𝜇𝑖0𝑠0 + 𝛼𝜌0𝑠0 − 𝛼𝜎𝑒0𝑠0 + 𝛼𝛽10𝑠0 + 𝜇
2𝑠0

+2𝜇𝛽1𝑠0 − 2𝜇𝛽1𝑣0 − 𝛽1
2𝑠0 + 𝛽2𝛽1𝑠0 − 𝛽2𝛽1𝑣0 − 𝛽2

2𝑣0 − 𝜇𝜃 − 𝜃𝛽1

) 

𝑒2(𝑡) = −
1

2
𝑡2 (

𝛼2𝑖0
2𝑠0 + 𝛼𝛿𝑖0𝑠0 + 3𝛼𝜇𝑖0𝑠0 + 𝛼𝜌0𝑠0 − 𝛼𝜎𝑒0𝑠0 + 𝛼𝜎10𝑠0 + 𝛼𝛽1𝑖0𝑠0

−𝛼𝛽2𝑖0𝑣0 − 𝛼𝜃𝑖0 − 𝜇
2𝑒0 − 2𝜇𝜎𝑒0 − 𝜎

2𝑒0
) 

𝐼2(𝑡) = −
1

2
𝑡2 (

𝛼𝛽1𝑖0𝑠0 − 𝜇
2𝑣0 + 2𝜇𝛽1𝑠0 − 2𝜇𝛽2𝑣0 + 𝛽1

2𝑠0 + 𝛽2𝛽1𝑠0 −

𝛽2𝛽1𝑣0 − 𝛽2
2𝑣0 − 𝜃𝛽1

) (44) 

𝑟2(𝑡) = −
1

2
𝑡2(𝛿𝜌𝑖0 − 𝜇

2𝑟0 + 2𝜇𝜌𝑖0 + 𝜌
2𝑖0 − 𝜌𝜎𝑒0)   

Subsequently, further iterations is carried out from the result of (36) which yields at n = 3 

𝑆3𝑐(𝑡) = −
1

6
𝑡3

(

 
 
 
 
 
 
 

𝜇3𝑠0 + 2𝜇𝛽1𝑠0 − 2𝜇𝛽2𝑣0 + 𝛽1
2𝑠0 + 𝛽2𝛽1𝑠0 − 𝛽2𝛽1𝑣0 − 𝛽2

2𝑣0𝛼
2𝜇𝑖0𝑠0 +

𝛼2𝛽1𝑖0𝑠0 − 𝛼
2𝛽2𝑖0𝑣0 − 𝛼

2𝜃𝑖0 + 𝛼𝛿𝑖0𝑠0 +  2𝛼𝜇𝑖0𝑠0 + 𝛼𝜌0𝑠0 + 2𝜇𝛽1𝑠0 − 2𝜇𝛽1𝑣0 − 𝛽1
2𝑠0 +

5𝛽2𝛽1𝑠0 − 𝛽2𝛽1𝑣0 − 𝛽2
2𝑣0 − 𝜇𝜃 − 𝜃𝛽1 − 𝛼𝜎𝑒0𝑠0 + 𝛼𝛽10𝑠0 + 𝜇

2𝑠0 + 3𝜇𝛽1𝑠0

−2𝜇𝛽1𝑣0 − 𝛽1
2𝑠0 + 4𝛽2𝛽1𝑠0 + 2𝜇𝛽1𝑠0 − 2𝜇𝛽1𝑣0 − 𝛽1

2𝑠0 + 𝛽2𝛽1𝑠0 − 5𝛽2𝛽1𝑣0

−3𝛽2
2𝑣0 − 𝛼𝑖0𝑠0 − 𝜇𝑠0 − 3𝛽1𝑠0 + 2𝛽2𝑣0 + 𝜃 − 𝜇𝜃 − 𝜃𝛽 − 2𝛽2𝛽1𝑣0 − 𝛽2

2𝑣0 −

+2𝛿𝜌𝑖0 − 𝛿𝜎𝑒0 + 𝜇
2𝑖0𝜇𝜃 − 𝜃𝛽 − 5𝛽1𝑠0 − 𝛽2𝑣0 + 𝜇𝑣0 − 3𝜇𝛽1𝑠0 − 2𝜇𝛽2𝑣0 + 𝛽1

2𝑠0
+𝛽2𝛽1𝑠0 − 𝛽2𝛽1𝑣0 + 2𝛼𝜎𝑒0𝑠0 + 𝛼𝜎10𝑠0𝛿

2𝑖0 + 2𝛿𝜇𝑖0 + 2𝜇𝜌𝑖01 + 3𝛼𝜇𝑖0𝑠0 +

𝛼𝜌0𝑠0 − 3𝛼𝜎𝑒0𝑠0 + 𝛼𝜎10𝑠0 + 𝛼𝛽1𝑖0𝑠0 − 𝛼𝛿𝑖0𝑠0 + 3𝛼𝜇𝑖0𝑠0 + 𝛼𝜌0𝑠0 − )
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𝑆3𝑎(𝑡) = −
1

6
𝑡2

(

 
 
 
 
 

𝛼𝛽1𝑖0𝑠0 − 𝜇
2𝑣0 + 2𝜇𝛽1𝑠0 − 2𝜇𝛽2𝑣0 − 2𝜇𝛽1𝑣0 − 𝛽1

2𝑠0 + 𝛽2𝛽1𝑠0 −

5𝛽2𝛽1𝑣0 − 3𝛽2
2𝑣0 − 𝛼𝑖0𝑠0 − 𝜇𝑠0 − 3𝛽1𝑠0 + 2𝛽2𝑣0 + 𝜃 − 𝜇𝜃 − 𝜃𝛽

−2𝛽2𝛽1𝑣0 − 𝛽2
2𝑣0 − 𝜇𝜃 − 𝜃𝛽 − 5𝛽1𝑠0 − 𝛽2𝑣0 + 𝜇𝑣0 − 3𝜇𝛽1𝑠0 +

𝛽1
2𝑠0 + 𝛽2𝛽1𝑠0 − 𝛽2𝛽1𝑣0 − 𝛽2

2𝑣0 − 𝜃𝛽1 + 𝛼𝛿𝑖0𝑠0 + 3𝛼𝜇𝑖0𝑠0 + 𝛼𝜌0𝑠0

−𝛼𝜎𝑒0𝑠0 + 𝛼𝜎10𝑠0 + 2𝜇𝛽1𝑠0 − 2𝜇𝛽2𝑣0 + 𝛽1
2𝑠0 + 3𝛽2𝛽1𝑠0 − 𝛽2𝛽1𝑣0

−𝛽2𝑣0 + 𝜇𝑣0 − 3𝜇𝛽1𝑠0 − 2𝜇𝛽2𝑣0 + 𝛽1
2𝑠0 + 𝛽2𝛽1𝑠0 )

 
 
 
 
 

 

𝑒3(𝑡) = −
1

6
𝑡2

(

 
 
 
 
 
 

𝛼2𝑖0
2𝑠0 + 𝛼𝛿𝑖0𝑠0 + 3𝛼𝜇𝑖0𝑠0 + 𝛼𝜌0𝑠0 − 𝛼𝜎𝑒0𝑠0 + 𝛼𝜎10𝑠0 + 𝛼𝛽1𝑖0𝑠0 + 2𝜇𝛽1𝑠0 −

2𝜇𝛽1𝑣0 − 𝛽1
2𝑠0 + 5𝛽2𝛽1𝑠0 − 𝛽2𝛽1𝑣0 − 𝛽2

2𝑣0 − 𝜇𝜃 − 𝛼𝛽2𝑖0𝑣0 − 3𝛼𝜃𝑖0 −

𝜇2𝑒0 − 2𝜇𝜎𝑒0 − 𝜎
2𝑒0 − 𝜇

2𝑟0 + 2𝜇𝜌𝑖0 + 𝜌
2𝑖0 + 𝛼𝛽1𝑖0𝑠0 − 4𝛼𝛿𝑖0𝑠0 + 3𝛼𝜇𝑖0𝑠0

+𝛼𝜌0𝑠0 − 2𝛼𝜎𝑒0𝑠 + 𝛼𝛿𝑖0𝑠0 + 3𝛼𝜇𝑖0𝑠0 + 𝛼𝜌0𝑠0 − 𝛼𝜎𝑒0𝑠0 + 𝛼𝜎10𝑠0 + 𝛼𝛽1𝑖0𝑠0𝑠0

−𝛼𝛽2𝑖0𝑣0 − 𝛼𝜃𝑖0 − 𝜇
2𝑒0 − 2𝜇𝜎𝑒0 − 𝜎

2𝑒0 − 𝛿𝜌𝑖0 − 𝜇
2𝑟0 − 3𝜇𝛽1 − 𝛼𝛽2𝑖0𝑣0 −

𝛼𝜃𝑖0 − 𝜇
2𝑒0 − 2𝜇𝜎𝑒0 − 𝜎

2𝑒0 − 𝛿𝜌𝑖0 − 𝜇
2𝑟0 − 3𝜇𝛽1 + 𝛽1

2𝑠0 + 𝛽2𝛽1𝑠0 − 𝛽2𝛽1𝑣0 −

𝛽2
2𝑣0 − 𝜃𝛽1𝛼𝛿𝑖0𝑠0𝜎𝑒0 − 𝜇𝑖0 − 𝛿𝑖0 − 𝜌𝑖0 + 2𝜇𝜌𝑖0 − 2𝜇𝜎𝑒0 + 𝜌

2𝑖0 − 𝜌𝜎𝑒0 − 𝜎
2𝑒0)

 
 
 
 
 
 

 

𝐼(𝑡) = −
1

6
𝑡2

(

 
 
 
 
 
 

𝛼𝜎𝑖0𝑠0 + 𝛿
2𝑖0 + 2𝛿𝜇𝑖0 + 2𝛿𝜌𝑖0 − 𝛿𝜎𝑒0 + 𝜇

2𝑖0 + 2𝜇𝜌𝑖0 − 2𝜇𝜎𝑒0 − 𝜇
2𝑟0 +

2𝜇𝜌𝑖0 + 𝜌
2𝑖0 + 𝛼𝛽1𝑖0𝑠0 − 4𝛼𝛿𝑖0𝑠0 + 3𝛼𝜇𝑖0𝑠0 + 𝛼𝜌0𝑠0 − 2𝛼𝜎𝑒0𝑠

+𝛼𝛿𝑖0𝑠0 + 3𝛼𝜇𝑖0𝑠0 + 𝛼𝜌0𝑠0 − 𝛼𝜎𝑒0𝑠0 + 𝛼𝜎10𝑠0 + 𝜌
2𝑖0 − 𝛽2

2𝑣0 − 𝜇𝜃 −

𝛼𝜎𝑒0𝑠0 + 𝛼𝛽10𝑠0 + 𝜇
2𝑠0 + 3𝜇𝛽1𝑠0 − 2𝜇𝛽1𝑣 − 𝜌𝜎𝑒0 − 𝜎

2𝑒0

+2𝜇𝜌𝑖0 + 𝜌
2𝑖0 + 𝛼𝛽1𝑖0𝑠0 − 4𝛼𝛿𝑖0𝑠0 + 3𝛼𝜇𝑖0𝑠0 + 𝛼𝜌0𝑠0 − 2𝛼𝜎𝑒0𝑠 +

𝛼𝛿𝑖0𝑠0 + 3𝛼𝜇𝑖0𝑠0 + 𝛼𝜌0𝑠0 − 𝛼𝜎𝑒0𝑠0 + 𝛼𝜎10𝑠0 + 𝛼𝛽1𝑖0𝑠0 − 𝛼𝛽2𝑖0𝑣0

−𝛼𝜃𝑖0 − 𝜇
2𝑒0 − 2𝜇𝜎𝑒0 − 𝜎

2𝑒0 − 𝛿𝜌𝑖0 )

 
 
 
 
 
 

 

𝑟2(𝑡) = −
1

6
𝑡2 (

𝛿𝜌𝑖0 − 𝜇
2𝑟0 + 2𝜇𝜌𝑖0 + 𝜌

2𝑖0 + 𝜎
2𝑒0 − 𝜇

2𝑟0 + 2𝜇𝜌𝑖0 + 𝜌
2𝑖0 + 𝛼𝛽1𝑖0𝑠0

−4𝛼𝛿𝑖0𝑠0 + 3𝛼𝜇𝑖0𝑠0 + 𝛼𝜌0𝑠0 − 2𝛼𝜎𝑒0𝑠 + 𝛼𝛿𝑖0𝑠0 + 3𝛼𝜇𝑖0𝑠0 + 𝛼𝜌0𝑠0
−𝛼𝜎𝑒0𝑠0 + 𝛼𝜎10𝑠0 + 𝛼𝛽1𝑖0𝑠 − 𝜌𝜎

2𝑒0

) 

This can be furthered till the desired number of iterations are obtained. Hence, the summary of iterative 

solutions to each model compartment is obtained as; 

 𝑆𝑐(𝑡) = ∑ 𝑠𝑘(𝑡)
3
𝑘=0 , 𝑆𝑎(𝑡) = ∑ 𝑣𝑘(𝑡)

3
𝑘=0 , 𝐸(𝑡) = ∑ 𝑒𝑘(𝑡)

3
𝑘=0 , 𝐼(𝑡) = ∑ 𝑖𝑘(𝑡)

3
𝑘=0 , 𝑅(𝑡) = ∑ 𝑟𝑘(𝑡)

3
𝑘=0 ,  (45) 

And evaluating these results using the corresponding model parameters of each class given by  

𝛼 = 0.008, 𝛿 = 0.4, 𝜇 = 1.0,𝑚 = 0.1, 𝜎 = 0.9, 𝜋 = 2.19, 𝛾1 = 1.263, 𝜅 = 0.002,
𝛾𝑒 = 0.03, 𝜑1 = 1.82, 𝛾𝑒 = 0.03, 𝜑1 = 1.82,

𝑣 = 0.5, 𝜙 = 0.2, 𝜑2 = 0.002, 𝛽 = 1.0003, 𝑒0 = 653930, 𝑠0𝑐 = 500000,
𝑠0𝑎 = 26000, 𝑖0 = 23890, 𝑟0 = 14730

} It is therefore 

obtained that; 

𝑆𝑐(𝑡) = 500 − 30.4320𝑡 + 0.7213561075𝑡
2 − 0.03863404097𝑡3 

𝑆𝑎(𝑡) = 120 − 1.5060𝑡 − 0.01591470000𝑡
2 + 0.00061794336453𝑡3 
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                  𝐸(𝑡) = 65 + 18.1785𝑡 − 1.171778775𝑡2 + 0.04155466537𝑡3             (46) 

𝐼(𝑡) = 23 − 0.9060𝑡 + 0.02925067500𝑡2 − 0.0008440367800𝑡3 

𝑅(𝑡) = 14 − 0.0155𝑡 − 0.005054500000𝑡2 + 0.0001458242542𝑡3 

The approximate results of each class are evaluated using their respective baseline values in obtained from 

table 2. We also suggest the following population data set as initial values given by  

𝑠0𝑐 = 500000, 𝑠0𝑎 = 26000, 𝑒0 = 653930, 𝑖0 = 23890, 𝑟0 = 14730. Thus we obtain the following series 

of results embedding the parameters whose influence on the dynamics of measles transmission are to be 

analysed as: 

𝑆𝑐(𝑡) = 1000 + (
273.20 + 1.383730𝜎
−1.6353𝜎2 − 37.68𝑚

) 𝑡 + (

−4672. 𝜎2

+29.8635𝜎4

54.0914019
+1.5361𝛼2𝑐

)
𝑡2

2
−

(

 
 
 
 
 
 
 

0.6522𝑐2

−0.5242𝛼3

−0.83736𝜎𝜑2

+2.9365𝛼4

+935.98111186𝛼2𝑐
+56.12092345𝑐
−5.923814565𝛼
10.352
+635.09𝜎6

−1.86344𝜎 )

 
 
 
 
 
 
 

𝑡3

6  

𝑆𝑎(𝑡) = 1000 + (
65.26869000 + 1.3362000𝛼
−1362.924000𝛼2 − 37.68𝑐

) 𝑡 +

(

 
 
 

−8.99856418𝛼2

+152.0510083𝛼2𝑐
−0.09970881600𝛼𝑐
+3333.926349
45.98509816𝑐
−3.288025569𝛼 )

 
 
 𝑡2

2
−

(

 
 
 

11.30828286𝛼2𝑐2

−66.76103861𝛼3

−0.003719829888𝛼𝑐2

+40645.08576𝛼4

+935.98111186𝛼2𝑐

−84.74264814𝛼⬚ )

 
 
 𝑡3

6
 

𝐸(𝑡) = 30 + (
−45.62599000
+1362.924999𝛼2

−1.336200000𝛼
) 𝑡 −

(

 
 

−69.38980854𝑐
−0.09970881600𝛼𝑐
+5378.993811𝛼2

+0.0000493608𝑐
−5.292993669𝛼 )

 
 𝑡2

2
+

(

 
 

11.30828286𝛼2
2
− 80.26339203𝛼3

−0.7679873978𝛼𝑐 + 1431.639314𝛼4𝑐
−1.875838588𝛼3𝑐 + 16753.17626𝛼2

+0.0003841080404𝑐 − 16.31203298𝛼
+36988.74452𝛼6 − 84.74264814𝛼5 )

 
 𝑡3

6
 

𝐼(𝑡) = 17 − 0.6373𝑡 − (

127.0391180
+0.63524𝜙2

−0.7283𝜙
)
𝑡2

2
−

(

 
 
 

−0.004499284709𝛼3

+320.2194878
−0.00004985440800𝛼𝑐
+4.407401276𝜙2

+2.46825 ⋅ 10−8𝑑
−0.004339725𝑑 )

 
 
 
𝑡3

6
         (47) 
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𝑅(𝑡) = 40 + (46.18360 + 37.68𝑐)𝑡 − (
250.8099123
+45.9850488𝑐
−2044.386000𝜙2

)
𝑡2

2
+

(

 
 

13.49785413𝛼3

−8249.759899𝛼4

+727.7734324
+56.12053936𝑑
+10.38388802𝜙 )

 
 𝑡3

6
    

Results and discussion 

The interpretation of numerical simulation conducted through iterative steps of homotopy perturbation 

method is depicted diagrammatically below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

          Figure 2. Effect of Vaccination Rate v on Susceptible Population 

    

 

 

 

 

 

 

 

 

 
    Figure 3. Effect of vaccination rate v on exposed population 
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       Figure 4. Effect of vaccination rate v on Infected Population 

 

 
 Figure 5. Effect of vaccination rate  on infected population 
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 Figure 6. Effect of vaccination rate  on susceptible population 

 
         Figure 7. Effect of vaccination rate  on exposed population 

In this graphical illustration, maple 18 software 

was utilized to simulate the disease dynamics 

over time with respective compartments. The 

findings are presented in a graphical format and 

extensively discussed. Fig.2 illustrates that as the 

vaccination rate increases, the vulnerable 

population also increases. Meanwhile, Fig.3 

demonstrates that when the vaccination rate goes 

from 0.0 to 0.9, the exposed population 

decreases. This suggests that an increase in 

vaccination rates results in a higher number of 

susceptible individuals and a decrease in 

vaccination rates leads to a higher number of 

exposed individuals. Additionally, as the 

vaccination rate rises, the exposed population 

decreases, as observed in Fig.4. over 20 months, 

it was noted that as the vaccination rate increases 

from 0.03 to 0.09, the infected population 

decreases. Fig.5 reveals that an increase in 

vaccination results in a reduction in the number 

of infected individuals, consequently increasing 

the population of susceptible individuals while 

fig.6 highlights the impact of vaccination on the 

susceptible population, particularly after 

recovery. Through treatment, susceptible 

individuals can be effectively recovered from the 

disease. In this context, vaccinating those who 

have recovered can significantly reduce the 

prevalence of the disease in the population and 

fig.6 explores the effects of the waning rate on 

exposed individuals. An increase in the waning 

rate leads to a reduction in the population of 

exposed individuals. For instance, when the 

waning rate is 0.01, more individuals are less 

likely to become infected, resulting in an 

increased population of susceptible individuals.  
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Conversely, reducing the waning rate increases the 

infected population. 

Conclusion 

This paper has been able to utilize the homotopy 

perturbation method to derive a numerical solution 

for the impact of high treatment vaccination 

efficacy on a measles model of SVEIR. This 

approach proved highly effective in yielding 

accurate model results bring the basic threshold of 

measles spread to less than unity. Subsequently, 

numerical output was simulated to assess the 

influence of vaccination saturation on measles 

transmission within the population, with careful 

analysis of the accompanying graphs to reveal key 

experimental and biological impact on the sub-

populations with time. Nevertheless, it is important 

to note that further research is essential to address 

the ongoing prevalence of this epidemic disease 

and to develop effective strategies for its 

containment and eradication and vaccination and 

treatment rate will suffice for certain period of 

combat towards the spread of  measles. The 

promotion of awareness, educational programs as 

preventive measures is crucial to policy makers and 

practitioners of health in controlling of the spread 

of measles in the future. 
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