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Abstract 

This paper explores the concept of (m, n)−absorbing ideals within an Almost Distributive 
Lattice (ADL). It also introduces and examines the notion of weakly (m, n)−absorbing ideals, a 
more generalized form of (m,n)- absorbing ideals. The primary focus is on establishing the 
relationship between (m, n)-absorbing ideals (and weakly (m, n)-absorbing ideals) and their 
counterparts, (m, n)-absorbing prime ideals (and weakly (m, n)-absorbing prime ideals), in an 
ADL. Additionally, the paper investigates the properties of homomorphic images and inverse 
images of (m, n)-absorbing ideals, demonstrating that these images retain the structure of (m, 
n) -absorbing ideals.  
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ORIGNAL ARTICLE 

understanding the ordering relationships in 
partially ordered sets (posets), aiding in the 
development of a robust theory of ordered 

structures. Let m, n ∈  Z+ with m > n and 
and I be a proper ideal in L. JALAL ABADI 
and Moghimi, (2017) introduced the 
concepts of an (m, n)-absorbing ideals F in 

commutative rings R if for all a1, ..., as ∈  R 

and a1...as ∈  F with m ≤ s, then there are n 
of the a′is whose product is in F. 
Additionally, the notion of weakly (m, n)-
prime ideals in commutative rings was 
introduced in Anderson and Smith (2003), 
highlighting their importance in the 
structural theory of distributive lattices, 
particularly within Boolean algebras. 

1. Introduction  

Prime ideals play a vital role in analyz ing 
the structure and characteristics of rings and 
lattices, initially introduced by Dubey (2012) 
and the concept has been expanded and 
generalized in (Anderson and Smith, 2003; 
Dubey, 2012; Mahdou et al., 2020) works. 
Koc et al. (2023) introduced 1-absorbing 
prime ideals, building on the idea of weakly 
1-absorbing prime ideals from Yassine et al. 
(2021). Research on prime ideals in lattices 
aims to extend the concept of prime 
numbers, understand localization, establish 
representation theorems, and delve into order 
theory. This work enhances our grasp of 
mathematical structures in a more refined 
way. Prime ideals are also fundamental for 
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Swamy and Rao (1981) have introduced
the concept of Almost Distributive Lattices
(ADLs). According to Swamy and Rao (1981),
a proper ideal F of an ADL L is prime if for
all a, b ∈ L with a∧b ∈ F , then a ∈ F or b ∈ F .
This concept was generalized by Natnael
Teshale Amare (2022) with weakly prime
ideals in L. According to Teshale Amare
(2022), a proper ideal F in L is a 2−absorbing
ideal (or weakly 2−absorbing ideal) of L if for
all a, b, c ∈ L with a∧ b∧ c ∈ F (0 ̸= a∧ b∧ c ∈
F ), then a ∧ b ∈ F or a ∧ c ∈ F or b ∧ c ∈ F .
In general, a proper ideal F in L is an
n−absorbing ideal in L if for all a1, ..., an ∈ R
and a1 ∧ ... ∧ an ∈ F , then there are n + 1 of
the a

′

is whose meet is in F . In this paper, we
introduce the concepts of (m,n)−absorbing
ideals and weakly (m,n)−absorbing ideals
in an ADL L, for all n ≤ m, which generalize
(m,n)−absorbing prime ideals and weakly
(m,n)−absorbing prime ideals, respectively.
We establish the relationships between
(m,n)−absorbing ideals, (m,n)−absorbing
prime ideals and (m,m − n)−absorbing
ideals. In addition, we note that every
(m,n)−absorbing prime ideal is an (m +
1, n + 1)−absorbing ideal. Counterexamples
are provided to illustrate that the converse
is not necessarily true. Moreover, we
study the relation between the pairwise
co-maximal ideal and (m,n)−absorbing ideal
and also, between minimal (m,n)−absorbing
ideal and (m,n)−absorbing ideal. We
observe that the intersection of a family
of (m,n)−absorbing ideals remains an
(m,n)−absorbing ideal. Finally, we
demonstrate that homomorphic images and
inverse images of (m,n)−absorbing ideals
are also (m,n)−absorbing ideals. We also
show that every (m,n)−absorbing ideal
is a weakly (m,n)−absorbing ideal, but
the converse is not always true. Finally,
we establish that the ideals of a pair are
weakly (m,n)−absorbing ideals if their direct
product is a weakly (m,n)−absorbing ideal,
yet counterexamples illustrate that weakly
(m,n)−absorbing ideals can exist whose

direct product is not necessarily a weakly
(m,n)−absorbing ideal.

2 Preliminaries

In this section, we recall certain definitions
and results concerning on an ADL, prime
ideals and (m,n)−prime ideals which will be
used in the sequel.

Definition 2.1. Swamy and Rao (1981) An
algebra R = (R,∧,∨, 0) of type (2, 2, 0) is
referred to as an ADL if it meets the subsequent
conditions for all r, s and t in R.

1. 0 ∧ r = 0

2. r ∨ 0 = r

3. r ∧ (s ∨ t) = (r ∧ s) ∨ (r ∧ t)

4. r ∨ (s ∧ t) = (r ∨ s) ∧ (r ∨ t)

5. (r ∨ s) ∧ t = (r ∧ t) ∨ (s ∧ t)

6. (r ∨ s) ∧ s = s.

Every distributive lattice with a lower bound
is categorized as an ADL.

Example 2.2. Swamy and Rao (1981) For any
nonempty set A, it’s possible to transform it
into an ADL that doesn’t constitute a lattice by
selecting any element 0 from A and fixing an
arbitrary element u0 ∈ R. For every u, v ∈ R,
define ∧ and ∨ on R as follows:

u ∧ v =

{
v if u ̸= u0

u0 if u = u0

and u ∨ v ={
u if u ̸= u0

v if u = u0

Then (A,∧,∨, u0) is an ADL (called the discrete
ADL) with u0 as its zero element.

Definition 2.3. Swamy and Rao (1981) Consider
R = (R,∧,∨, 0) be an ADL. For any r and
s ∈ R, establish r ≤ s if r = r ∧ s (which
is equivalent to r ∨ s = s). Then ≤ is a partial
order on R with respect to which 0 is the smallest
element in R.
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Theorem 2.4. Swamy and Rao (1981) The
following conditions are valid for any r, s and t
in an ADL R.

(1) r ∧ 0 = 0 = 0 ∧ r and r ∨ 0 = r = 0 ∨ r

(2) r ∧ r = r = r ∨ r

(3) r ∧ s ≤ s ≤ s ∨ r

(4) r ∧ s = r iff r ∨ s = s

(5) r ∧ s = s iff r ∨ s = r

(6) (r ∧ s) ∧ t = r ∧ (s ∧ t) (in other words, ∧
is associative)

(7) r ∨ (s ∨ r) = r ∨ s

(8) r ≤ s ⇒ r ∧ s = r = s ∧ r
(

iff
r ∨ s = s = s ∨ r

)
(9) (r ∧ s) ∧ t = (s ∧ r) ∧ t

(10) (r ∨ s) ∧ t = (s ∨ r) ∧ t

(11) r ∧ s = s ∧ r iff r ∨ s = s ∨ r

(12) r ∧ s = inf{r, s} iff r ∧ s = s ∧ r iff
r ∨ s = sup{r, s}.

Definition 2.5. Swamy and Rao (1981) Let R
and G be ADLs and form the set R×G by R×G =
{(r, g) : r ∈ R and g ∈ G}. Define ∧ and ∨ in
R×G by, (r1, g1) ∧ (r2, g2) = (r1 ∧ r2, g1 ∧ g2)
and (r1, g1)∨ (r2, g2) = (r1 ∨ r2, g1 ∨ g2), for all
(r1, g1), (r2, g2) ∈ R×G. Then (R×G,∧,∨, 0)
is an ADL under the pointwise operations and
0 = (0, 0) is the zero element in R×G.

Definition 2.6. Swamy and Rao (1981) Let R
and G be ADLs. A mapping f : R → G is called
a homomorphism if the following are satisfied, for
any r, s ∈ R.
(1). f(r ∧ s) = f(r) ∧ f(s)
(2). f(r ∨ s) = f(r) ∨ f(s)
(3). f(0) = 0.

Definition 2.7. Swamy and Rao (1981) A
non-empty subset, denoted as I in an ADL R is
termed an ideal in R if it satisfies the conditions:
if u and v belong to I , then u∨ v is also in F , and
for every element r in R, the u ∧ r is in F .

Definition 2.8. Swamy and Rao (1981) A proper
ideal I in R is a prime ideal if for any u and v
belongs R, u ∧ v belongs F , then either u belongs
F or v belongs F .

Theorem 2.9. Stone (1938) Let I be an ideal in
R. Let F be a non-empty subset in R such that
r ∧ s ∈ F , for all r and s ∈ F . Assume I ∩ F is
empty set. Then there exists a prime ideal P in R
containing I and P ∩ F is empty set.

Theorem 2.10. Teshale Amare (2022) Let P be
an ideal in R. Then P a weakly prime ideal in R
only if P is a prime ideal in R.

Definition 2.11. Khashan and Celikel (2024a)
Let R be a ring and m,n be positive integers. A
proper ideal I of R is called a (m,n)−prime in R
if for a, b ∈ R, amb ∈ I implies either an ∈ I or
b ∈ I..

Definition 2.12. Khashan and Celikel (2024b)
Let R be a ring and m,n be positive integers. A
proper ideal I of R is called weakly (m,n)−prime
in R if for a, b ∈ R, 0 ̸= amb ∈ I implies either
an ∈ I or b ∈ I..

3 (m,n)−Absorbing Ideals

In this section, we define and characterize
the concept of (m,n)−absorbing ideals
in an ADL L and their properties. In
particular, we study on the direct product
of (m,n)−absorbing ideals and their
homomorphic images.

Definition 3.1. Let m,n ∈ Z+ with m > n.
A proper ideal F in L is an (m,n)−absorbing
ideal in L if for all f1, f2, ..., fm ∈ L such that
m∧
i=1

fi ∈ F , then there are n of f
′

i s whose meet is

in F .

Example 3.2. Let L = {0, u, v} be a discrete
ADL with 0 as its zero element defined in Example
2.2 and M = {0, a, b, c, d, e, f, 1} be a lattice
whose Hasse diagram is given below:
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Put G = {(0, 0), (0, b), (0, a), (0, d)}. Clearly
G is an ideal in L × M . For any element
(u, d), (v, e), (0, f) ∈ L × M , (u, d) ∧ (v, e) ∧
(0, f) ∈ G implies (u, d)∧ (0, f) ∈ G. Thus G is
a (3, 2)−absorbing ideal in L×M .

Let us recall that, ⟨r] = {r ∧ s : s ∈ L}.

Lemma 3.3. Let fi, gi ∈ L, for all 1 ≤ i ≤ m.
Then the following hold.

(1).
m⋂
i=1

⟨fi] = ⟨
m∧
i=1

⟨fi]

(2). ⟨
m∧
i=1

⟨fi] ∩ ⟨
m∧
i=1

⟨gi] = ⟨
m∧
i=1

(fi ∧ gi)] =

⟨
m∧
i=1

(gi ∧ fi)]

(3). ⟨
m∧
i=1

⟨fi] ∨ ⟨
m∧
i=1

⟨gi] = ⟨
m∧
i=1

(fi ∨ gi)] =

⟨
m∧
i=1

(gi ∨ fi)].

Theorem 3.4. Let F be a proper ideal in L. Then
the following are equivalent.
(1). F is an (m,n)−absorbing ideal

(2). For any ideals F1, ..., Fm ∈ L and
m⋂
i=1

Fi ⊆

F , then there are the n of F
′

i s whose intersection
is a subset of F
(3). For any ideals F1, ..., Fm ∈ L and

F =
m⋂
i=1

Fi, then there are the n of F
′

i s whose

intersection is a subset of F .

Proof. (1) ⇔ (2) : Suppose F is an
(m,n)−absorbing ideal. Let F1, ..., Fm be

ideals in L such that
m⋂
i=1

Fi ⊆ F . Assume

there are n of F
′

i s whose intersection is not a

subset of F ; that is,
n⋂

i=1

Fi ⊈ F ,
n+1⋂
i=2

Fi ⊈ F

and so on. Choose fi ∈ L, for each 1 ≤

i ≤ n,
n∧

i=1

fi ∈
n⋂

i=1

Fi,
n∧

i=1

fi /∈ F ,
n+1∧
i=2

fi ∈
n+1⋂
i=2

Fi,
n+1∧
i=2

fi /∈ F and so on. Consequently,
m∧
i=1

fi ∈
m⋂
i=1

Fi and
m∧
i=1

Fi /∈ F . Thus,
m⋂
i=1

Fi ⊈

F , gives a contradiction. Hence the result. On
the other hand, let f1, ..., fm ∈ L such that
m∧
i=1

fi ∈ F . So, ⟨
m∧
i=1

fi] ⊆ F . By assumption,

we get that there are n of the ⟨fi]′s whose
intersection is a subset of F and hence there
are n of the f ′

is whose meet is in F , since
fi ∈ ⟨fi] and by lemma 3.3 (1). Thus, F is
an (m,n)−absorbing ideal in L.
(2) ⇔ (3) and (3) ⇔ (1) are clear.

Theorem 3.5. Let F be a proper ideal in L. Then
the following assertion hold.
(1). F is a 2−absorbing ideal iff F is a
(3, 2)−absorbing ideal
(2). If F is an (m,n)-prime ideal, then F is an
(m+ 1, n+ 1)−absorbing ideal
(3). If F is an (m,n)−absorbing prime ideal, then
F is an (m,n)−absorbing ideal
(4). If F is an (m,n)−absorbing ideal, then F is
an (m∗, n∗)−absorbing ideal, for all m∗ ≥ m and
n∗ ≥ n
(5). F is an (m,n)−absorbing ideal iff F is an
(m,m− n)−absorbing ideal.

Proof. (1). For m = 3 and 2 = 1, it is clear.
(2). Suppose F is an (m,n)-prime ideal. Let

f1, f2, ..., fm+1 ∈ L with
m+1∧
i=1

fi ∈ F . Then

m+1∧
i=1

fi =
m∧
i=1

fi ∧ fm+1 ∈ F and hence
n∧

i=1

fi ∈

F or fm+1 ∈ F , since F is (m,n)−prime.
Thus, Q is an (m+ 1, n+ 1)−absorbing ideal.
(3). Suppose F is an (m,n)−absorbing prime

ideal. Let f1, f2, ..., fm ∈ L such that
m∧
i=1

fi ∈

F . Then either
n∧

i=1

fi ∈ F or
m∧

i=n+1

fi ∈ F .

Hence the result.
(4). Suppose F is an (m,n)−absorbing ideal
in L and m∗ ≥ m and n∗ ≥ n, for all
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m,n,m∗, n∗ ∈ Z+. Let f1, f2, ..., fm ∈ L with
m∗∧
i=1

fi ∈ F . We prove there are n∗ of f ′
is whose

meet is in F .
Case 1: Let m∗ = m. It is clear.
Case 2: Let m∗ > m. If n∗ = n, then there
are n of f ′

is whose meet is in F . Suppose

n∗ > n. By assumption, we get that
n∧

i=1

fi ∈ F

or
n+1∧
i=2

fi ∈ F or
n+2∧
i=3

fi ∈ F and so on. It

follows that
n∗∧
i=1

fi =
n∧

i=1

fi∧fn∗ ∈ F ,
n∗+1∧
i=2

fi =

n+1∧
i=2

fi ∧ fn∗+1 ∈ F and so on (since F is an

ideal and by hypothesis). Thus there are n∗

of f ′
is whose meet is in F . Therefore, F is an

(m∗, n∗)−absorbing ideal.
(5). Suppose H is an (m,n)−absorbing ideal.

Let f1, f2, ..., fm ∈ L with
m∧
i=1

fi ∈ F .

Case 1. Let m − n > n. It is clear, by
assumption.

Case 2. Let n > m − n. Then
n∧

i=1

fi =

m−n∧
i=1

fi∧
n∧

i=m−n+1

fi. By assumption to get that

n∧
i=1

fi ∈ F or
n+1∧
i=2

fi ∈ F or
n+2∧
i=3

fi ∈ F and so

on. Thus,
m−n∧
i=1

fi ∧
n∧

i=m−n+1

fi ∈ F . Since F is

an ideal, we have
m−n∧
i=1

fi ∈ F or
n∧

i=m−n+1

fi ∈

F . Thus, F is an (m,m− n)−absorbing ideal.
The converse is clear.

The converse of the above results (2-4) are not
true; consider the following example.

Example 3.6. Let C = {0, u, v} be a discrete
ADL with 0 as its zero element defined in
2.2 and D = {0, a, b, c, d, e, f, g, h, i, j, 1} be
a lattice whose Hasse diagram is given below:

Consider C × D = {(t, s) : t ∈ C and s ∈ D}.
Then (C×D,∧,∨, 0) is an ADL (note that C×D
is not a lattice) under the point-wise operations ∧
and ∨ on C ×D and 0 = (0, 0), the zero element
in C ×D.
(2). Put A = {(0, 0), (0, a)}. Note that A is an
ideal in C ×D. Let (u, d), (v, e), (u, f), (0, g),
(v, h) ∈ C×D such that (u, d)∧ (v, e)∧ (u, f)∧
(0, g)∧(v, h) ∈ A implies (u, d)∧(0, g)∧(v, h) =
(0, 0) ∈ A. Thus A is a (5, 3)−absorbing ideal in
C × D. But A is not a (4, 2)-prime ideal, since
(u, d)∧(v, e)∧(u, f)∧(0, g)∧(v, h) ∈ A implies
(u, d) ∧ (v, e) = (u, a) /∈ A, (u, f) ∧ (0, g) =
(0, c) /∈ A and (v, h) /∈ A.
(3). Clearly A is a (4, 2)−absorbing ideal, A
is defined in above (2). While A is not a
(4, 2)−absorbing prime ideal in C × D, since
(u, d) ∧ (v, e) ∧ (u, f) ∧ (0, g) ∈ A implies
(u, d)∧ (v, e) = (u, a) /∈ A and (u, f)∧ (0, g) =
(0, c) /∈ A.
(4). Let B = {(0, 0)}. Clearly B is a
(5, 3)−absorbing ideal but not a (4, 2)−absorbing
ideal. This is demonstrated by considering any
elements (0, d), (u, e), (v, f), (u, h) ∈ C×D with
(0, d)∧ (u, e)∧ (v, f)∧ (u, h) ∈ B. Then (0, d)∧
(u, e) = (0, a) /∈ H , (0, d) ∧ (v, f) = (0, b) /∈ B,
(0, d) ∧ (u, h) = (0, d) /∈ B, (u, e) ∧ (v, f) =
(u, c) /∈ B, (u, e) ∧ (u, h) = (u, e) /∈ B and
(v, f) ∧ (u, h) = (u, c) /∈ B.

(1). An (n + 1, n)−absorbing ideal is
just n−absorbing ideal and in particular, a
(2, 1)−absorbing ideal is just a prime ideal
(2). Every (m,n)−absorbing ideal is a (m −
1)−absorbing ideal
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(3). The intersection of n−prime ideals is
n−absorbing ideals
(4). If Fj is an nj−absorbing ideal, for each

1 ≤ j ≤ m, then
m⋂
j=1

Fj is a n−absorbing

ideal, for each n =
m∨
i=1

ni. In particular, if

F1, ..., Fn are prime ideals in L, then
n⋂

i=1

Fi is

an n−absorbing ideal.

Let F be an ideal in L. We note that, F ∩⟨r] =
{s ∈ L : r ∧ s ∈ F}.

Lemma 3.7. Let F be an (m,n)−absorbing ideal
in L. Then F ∩ ⟨r] is an (m,n)−absorbing ideal
in L containing F .

Proof. Let f1, ..., fm ∈ L with
m∧
i=1

fi ∈ F ∩ ⟨r].

Then r ∧
m∧
i=1

fi =
m∧
i=1

(r ∧ fi) ∈ F . By

assumption to get that there are n of (r ∧ fi)
′s

whose meet is in F and hence there are n
of f ′

is whose meet is in F ∩ ⟨r]. Hence the
result.

In the following, we extend Stone Stone
(1938) on prime ideals to (m,n)−absorbing
ideals in an ADL.

Theorem 3.8. Let K be an ideal and G a
non-empty subset in L such that

m∧
i=1

fi ∈ G

implies there are n of f
′

i s whose meet is in F , for
all f1, f2, ..., fm ∈ L and K ∩G = ∅. Then there
exists an (m,n)−absorbing ideal F in L such that
K ⊆ F and F ∩G = ∅.

Proof. Put A = {H ⊆ L :
H is an ideal such that K ⊆ H and H ∩ G =
∅}. Clearly A ≠ ∅, since K ∈ A and hence
(A,⊆) is a poset. It can be easily verified that
the hypothesis of Zorn’s lemma is satisfied
in (A,⊆). Thus there exists a maximal
member, say F in A such that K ⊆ F and
F ∩ G = ∅. It is sufficient to prove F is an
(m,n)−absorbing ideal. Since F ∩ G = ∅
and G ̸= ∅, it follows that F ̸= L and hence

F is proper. Let f1, ..., fm ∈ L such that
there are n of f ′

is whose meet in F ; that is,
n∧

i=1

fi /∈ F ,
n+1∧
i=2

fi /∈ F and so on. Then

F ∨ ⟨
n∧

i=1

fi], F ∨ ⟨
n+1∧
i=2

fi] and so on, are ideals

properly containing F . By the maximality of

F , F ∨ ⟨
n∧

i=1

fi], F ∨ ⟨
n+1∧
i=2

fi] and so on, are not

a members of A. Thus,
(
F ∨⟨

n∧
i=1

fi]
)
∩G ̸= ∅,(

F ∨ ⟨
n+1∧
i=2

fi]
)
∩ G ̸= ∅ and so on. Choose

h1 ∈
(
F ∨⟨

n∧
i=1

fi]
)
∩G, h2 ∈

(
F ∨⟨

n+1∧
i=2

fi]
)
∩G

and so on. Then
m∧
i=1

hi ∈ G and
m∧
i=1

hi ∈(
(F ∨ ⟨

n∧
i=1

fi]) ∧ (F ∨ ⟨
n+1∧
i=2

fi]) ∧ ...
)

=

F ∨
(
⟨

n∧
i=1

fi] ∧ ⟨
n+1∧
i=2

fi] ∧ ...
)

= F ∨ ⟨
m∧
i=1

fi],

since F ∩ G = ∅. It follows that
m∧
i=1

fi /∈ F .

Thus, F is an (m,n)−absorbing ideal.

Corollary 3.9. Let G be an ideal in L and F a
prime ideal containing G iff, for any a ∈ F , there
exist b /∈ F such that a ∧ b ∈ F .

Theorem 3.10. If Fi is an (mi, ni)−absorbing

ideal in L for each 1 ≤ i ≤ m∗, then
m∗⋂
i=1

Fi is

an (m,n)−absorbing ideal, where n =
m∗∨
i=1

ni and

m =
m∗∨
i=1

mi ∨ (n+ 1).

Proof. To prove this theorem by using
mathematical induction. It is true for m∗ = 1.
That is,

⋂
F1 is a (1, 1)−absorbing ideal as F1

is a (m1, n1)−absorbing ideal. Suppose m∗ =

k; that is,
k⋂

i=1

Fi is an (m,n)−absorbing ideal,

where n =
k∨

i=1

ni and m =
k∨

i=1

mi ∨ (n + 1)

is true as Fi is an (mi, ni)−absorbing ideal
in L for each 1 ≤ i ≤ k. We prove
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that for m∗ = k + 1. That is, to prove
k+1⋂
i=1

Fi is an (m,n)−absorbing ideal, where

n =
k+1∨
i=1

ni and m =
k+1∨
i=1

mi ∨ (n + 1) as Fi

is an (mi, ni)−absorbing ideal in L, for each

1 ≤ i ≤ k+1. As
k+1⋂
i=1

Fi =
k⋂

i=1

Fi∩Fk+1,
k⋂

i=1

Fi

is an (m,n)−absorbing ideal, for n =
k∨

i=1

ni

and m =
k∨

i=1

mi∨(n+1) and F is an ideal, we

conclude that
k+1⋂
i=1

Fi is an (m,n)−absorbing

ideal, for n =
k+1∨
i=1

ni and m =
k+1∨
i=1

mi∨ (n+1).

Thus,
m∗⋂
i=1

Fi is an (m,n)−absorbing ideal.

Lemma 3.11. A proper ideal F in L is an

(m,n)−absorbing ideal iff whenever
k∧

i=1

fi ∈ F ,

for all f1, ..., fk ∈ L with k ≥ m, then there are n
of the f ′

is whose meet is in F .

Recalling that two ideals I and J are
co-maximal if I ∨ J = L.

Theorem 3.12. Let G1, ..., Gm be prime ideals in

L that are pairwise co-maximal. Then
m⋂
i=1

Gi is an

(m,n)−absorbing ideal in L.

Proof. Put F =
m⋂
i=1

Gi. Let G1, ..., Gm be

prime ideals that are pairwise co-maximal.
To prove that F is an (m,n)−absorbing ideal
in L. For m = 2, it clear; that is, every
prime ideal is (2, 1)−absorbing ideal, by 3 (1).
Assume it is true for m = k. That is, F
is a (k, n)−absorbing ideal and hence there
are n of G′

is whose intersection is in F . To
prove for m = k + 1; that is; to prove that
F is a (k + 1, n)−absorbing ideal and hence
there are n of G′

is whose intersection is in

F . As,
k+1⋂
i=1

Gi =
k⋂

i=1

Gi ∩ Gk+1,
k⋂

i=1

Gi is a

(k, n)−absorbing ideal and F is an ideal, we

conclude that
k+1⋂
i=1

Gi is a (k+1, n)−absorbing

ideal. Thus, by using mathematical induction
F is an (m,n)−absorbing ideal.

Corollary 3.13. Let G1, ..., Gm be maximal

ideals in L. Then
m⋂
i=1

Gi is an (m,n)−absorbing

ideal in L.

Theorem 3.14. Let G be an ideal in L.
Then there is an (m,n)−absorbing ideal in L
which is minimal (m,n)−absorbing ideal in L
containing G. In particular, L has a minimal
(m,n)−absorbing ideal.

Proof. Let F be the set of all (m,n)−absorbing
ideals in L containing G. Since every
maximal ideal in L containing G is an
(m,n)−absorbing ideal. So, F ̸= ∅. It is
cleat that (F ,≤) is a partial ordered set in
which G1 ≤ G2, for all G1, G2 ∈ F . Let
S = {Gα}α∈∆ be an arbitrary non-empty
chain of elements of F and let K =

⋂
α∈∆

Gα.

We show that K is an (m,n)−absorbing
ideal in L. Since S ̸= ∅, K ̸= L. Suppose
m∧
i=1

fi ∈ K, for some f1, ..., fm ∈ L. Assume

that there are n of the f ′
is whose meet is not

in K. Since S is a chain, there is Gα ∈ S
such that no n of f ′

is whose meet is in Gα,
gives a contradiction. Thus there are n of the
f ′
is whose meet is in K. By Zorn’s lemma,
(F ,≤) has a maximal element; that is, there
is a minimal (m,n)−absorbing ideal of L
containing G.

Corollary 3.15. Let G be an ideal in L. Then
there exists a minimal n−absorbing ideal in L
containing G.

Corollary 3.16. Let F be an (m,n)−absorbing
ideal in L and s, t ∈ Z+ such that 2 ≤ s ≤ t ≤
m−1. If F has a (t, s)−minimal prime ideal, then
F has at least (t, s)−minimal absorbing ideal.

Theorem 3.17. Let F be an (m,n)−absorbing
ideal in L such that F has exactly (m,n)−
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minimal prime ideals, say G1, ..., Gm. Then
m⋂
i=1

Gi ⊆ F .

Proof. Let m = 1. Clearly 1-absorbing ideal
is prime. Assume m ≥ 2. Let fi ∈ Gi, for

each 1 ≤ i ≤ m. Thus
m∧
i=1

fi ∈
m⋂
i=1

Gi. As

m+1∧
i=1

fi ∈ F and F is an ideal, we conclude

that
m∧
i=1

fi ∈ F . Hence the result.

Corollary 3.18. Let F be an (m,n)−absorbing
ideal in L such that F has exactly (m,n)−
minimal prime ideals, say G1, ..., Gm. If G′

is are

co-maximal, then
m⋂
i=1

Gi = F .

Next, we introduce the notion of the direct
product of (m,n)−absorbing ideal in L1×L2,
where L1 and L1 are ADLs. Let F and G
be ideals in L1 and L2, respectively. Let
(a, b), (c, d) ∈ F . Then (a, b) ∨ (c, d) = (a ∨
c, b∨d) ∈ F ×L2, since a∨c ∈ F . Also, (a, b)∧
(r, s) = (a∧ r, b∧ s) ∈ F ×L2, since a∧ r ∈ F .
Thus F × L2 is an ideal. Similarly, L1 × G
is an ideal. In the case of (m,n)−absorbing
ideal, we have the following.

Theorem 3.19. Let L = L1 × L2. Then
the following assertion hold. If F is an
(m,n)−absorbing ideal in L1, then F × L2 is
an (m,n)−absorbing ideal in L. Also, if G is an
(m,n)−absorbing ideal in L2, then L1 ×G is an
(m,n)−absorbing ideal in L.

Proof. Suppose F is an (m,n)−absorbing
ideal in L1. Let f1, f2, ..., fm ∈ L1 such that
m∧
i=1

(fi, r) ∈ F × L2, for some r ∈ L2. As

there are n of the f ′
is whose meet is in F if

m∧
i=1

fi ∈ F . Thus, there are n of the (fi, r)
′s

whose meet is in F × L2. Therefore, F × L2

is an (m,n)−absorbing ideal in L. Similarly,
L1 ×G is an (m,n)−absorbing ideal in L if G
is an (m,n)−absorbing ideal in L2.

In the following, we establish that
both the image and pre-image of
any (m,n)−absorbing ideal is again
(m,n)−absorbing ideal.

Theorem 3.20. Let L1 and L2 be ADLs and
h : L1 → L2 be a lattice homomorphism. Then
the following hold.
(1). Let G be an (m,n)−absorbing ideal in L2.
Then h−1(G) is an (m,n)−absorbing ideal in L1

(2). Let h be an epimorphism and F be
an ideal. Then F is an (m,n)−absorbing
ideal in L1 containing ker(h) iff h(F ) is an
(m,n)−absorbing ideal in L2.

Proof. (1). Suppose G is an (m,n)−absorbing
ideal in L2. Let f1, ..., fm ∈ L1 such that
m∧
i=1

fi ∈ h−1(G). Then h(
m∧
i=1

fi) =
m∧
i=1

h(fi) ∈

G, and hence there are n of f ′
is whose meet

is in h−1(G), since there are n of h(fi)
′s

whose meet is in G. Thus, h−1(G) is an
(m,n)−absorbing ideal in L1.
(2). Suppose F is an (m,n)−absorbing ideal
in L1. Let g1, g2, ..., gm ∈ L2 such that h(f1) =
g1, h(f2) = g2, ..., h(fm) = gm, for some
f1, f2, ..., fm ∈ L1. Since ker(h) ⊆ F , then

h(F ) is proper. Suppose that
m∧
i=1

gi ∈ h(F ).

Since
m∧
i=1

gi ∈ h−1(h(F )),
m∧
i=1

h(fi) =
m∧
i=1

gi ∈

h(F ) and there are n of f ′
is whose meet is in

F , we conclude that there are n of g′is whose
meet is in h(F ). Hence the result.

4 Weakly (m,n)−Absorbing
Ideal

In this section, we introduce the concepts
of weakly (m,n)−absorbing ideal, generalize
the notion of weakly prime ideals and
(m,n)−absorbing ideals. We justify several
properties and characterizations of weakly
(m,n)−absorbing ideals with supportive
examples. Furthermore, we investigate
the direct product, homomorphic images
and pre-images of weakly (m,n)−absorbing
ideals.
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Definition 4.1. Let m,n ∈ Z+ with m > n. A
proper ideal F in L is a weakly (m,n)−absorbing
ideal in L if for all f1, f2, ..., fm ∈ L such that

0 ̸=
m∧
i=1

fi ∈ F , there are n of f
′

i s whose meet is

in F .

In the following, we introduce the
relationship between (m,n)−absorbing ideal
and weakly (m,n)−absorbing ideal.

Theorem 4.2. Every (m,n)−absorbing ideal is a
weakly (m,n)−absorbing ideal and the converse
of this is not true.

Example 4.3. Let C = {0, u, v} be a discrete
ADL with 0 as its zero element defined in 2.2
and D = {0, a, b, c, d, e, f, g, h, i, j, 1} be a lattice
defined in 3.6. Put I = {(0, 0)}, is an ideal in
C × D. Clearly I is a weakly (4, 2)−absorbing
ideal in C ×D but not an (4, 2)−absorbing ideal,
since (u, d) ∧ (v, e) ∧ (0, f) ∧ (u, g) ∈ I implies
(u, d) ∧ (v, e) = (u, a) /∈ I, (u, d) ∧ (0, f) =
(0, b) /∈ I, (u, d) ∧ (u, g) = (u, 0) /∈ I, (v, e) ∧
(0, f) = (0, c) /∈ I, (v, e) ∧ (u, g) = (u, c) /∈ I
and (0, f) ∧ (u, g) = (0, c) /∈ I.

Next, we characterize weakly (m,n)−absorbing
ideals in direct product of ADLs.

Corollary 4.4. Let F ( ̸= {0}) be a proper
ideal in L = L1 × L2. Then F is a
weakly (m,n)−absorbing ideal in L iff F is an
(m,n)−absorbing ideal in L.

Theorem 4.5. Let F and G be proper ideals
of L1 and L2. If F × G is a weakly
(m,n)−absorbing ideal in L1 × L2, then F are
G are weakly (m,n)−absorbing ideals in L1 and
L2, respectively.

Proof. Suppose F × G is a weakly
(m,n)−absorbing ideal in L1 × L2. Let

f1, f2, ..., fm ∈ L1 such that 0 ̸=
m∧
i=1

fi ∈ F

and 0 ̸=
m∧
i=1

gi ∈ G, for all g1, g2, ..., gm ∈ L2.

Then (0, 0) ̸=
( m∧
i=1

fi,
m∧
i=1

gi
)

∈ F × G. By

assumption to get that, there are n of the
(fi, gi)

′s whose meet is in F × G and hence
there are n of f ′

is and g′is whose meet are in
F and G, respectively. Thus, F are G are
weakly (m,n)−absorbing ideals in L1 and
L2, respectively.

If there are weakly (m,n)−absorbing
ideals, then their direct product may not
weakly (m,n)−absorbing ideal; consider the
following example.

Example 4.6. Let L1 = {0, a, b, c, d, e, f, 1} be
a lattice defined in 3.2 and L2 = {0, r, s, t, 1} be
a lattice represented by the Hasse diagram given
below:

d

d
d

d

d

0

r

s

t

1

Consider L1 × L2 = {(x, y) : x ∈ L1 and y ∈
L2}. Put F = {0} and G = {0, r}. Clearly F
and G are weakly (3, 2)−absorbing ideals in L1

and L2, respectively. But F×G = {(0, 0), (0, r)}
is not a weakly (3, 2)−absorbing ideal in L1×L2,
since (0, 0) ̸= (d, 1) ∧ (e, t) ∧ (f, r) ∈ F × G
implies (d, 1) ∧ (e, t) = (a, t) /∈ F × G,
(d, 1) ∧ (f, r) = (b, r) /∈ F × G, and (e, t) ∧
(f, r) = (c, r) /∈ F ×G.

Theorem 4.7. Let L1 and L2 be ADLs and F ( ̸=
{0}) be a proper ideal in L1. Then the following
are equivalent.
(1). F × L2 is a weakly (m,n)−absorbing ideal
in L1 × L2

(2). F × L2 is an (m,n)−absorbing ideal in
L1 × L2

(3). F is an (m,n)−absorbing ideal in L1.

Proof. (1) ⇔ (2) : It is clear.
(2) ⇔ (3) : Assume (2) hold. Let
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f1, f2, ..., fm ∈ L1 with
m∧
i=1

fi ∈ F . Clearly

(
m∧
i=1

fi, r) ∈ F × L2, for some r ∈ L2. By (2),

we have there are n of (fi, r)′s whose meet is
in F × L2 and hence there are n of f ′

is whose
meet is in F . Hence the result. The converse
is clear.
(3) ⇔ (1) : Suppose F is an (m,n)−absorbing
ideal in L1. Let f1, f2, ..., fm ∈ L1 such that

(0, 0) ̸= (
m∧
i=1

fi, r) ∈ F × L2, for some r ∈

L2. By assumption, there are n of f ′
is whose

meet is in F and hence there are n of (fi, r)′s
whose meet is in F × L2. Thus, F × L2 is
a weakly (m,n)−absorbing ideal in L1 × L2.
The converse is clear.

The following Theorem is an immediate
consequence of 4.5 and 4.7.

Corollary 4.8. Let F (̸= {0}) and G(̸= {0}) be
proper ideals in L1 and L2, respectively. Then the
following are equivalent.
(1). F ×G is a weakly (m,n)−absorbing ideal in
L1 × L2

(2). G = L2 and F is an (m,n)−absorbing ideal
in L1, or G is an (m,n)−prime ideal in L2 and F
is an (m,n)−prime ideal ideal in L1

(3). F × G is an (m,n)−absorbing ideal in
L1 × L2.

Corollary 4.9. Let L = L1 × L2 × ... × Lk

and H (̸= {0}) be proper ideal in L. Then the
following are equivalent.
(1). F is a weakly (m,n)−absorbing ideal in L
(2). F = L1 × L2 × ... × Fj × ... × Lk, where
Fj is an (m,n)−absorbing ideal in Lj , for some
j ∈ {1, 2, ..., k}
(3). F is an (m,n)−absorbing ideal in L.

Finally, we discuss the homomorphism of
weakly (m,n)−absorbing ideals.

Theorem 4.10. Let L1 and L2 be ADLs and
h : L1 → L2 be a lattice homomorphism.
If k is a monomorphism and G is a weakly
(m,n)−absorbing ideal in L2, then h−1(G) is

a weakly (m,n)−absorbing ideal in L1. Also,
let h be an epimorphism. Then F is a weakly
(m,n)−absorbing ideal in L1 containing ker(k)
iff h(F ) is a weakly (m,n)−absorbing ideal in L2.

5 Conclusion

We define the notions of (m,n)−absorbing
ideals and weakly (m,n)−absorbing ideals
in an ADL and discuss their properties.
Also, we introduce the concept of weakly
(m,n)−absorbing ideals, generalizing
weakly prime ideals and (m,n)−absorbing
prime ideals. Furthermore, we explore
the properties of (m,n)−absorbing ideals
and weakly (m,n)−absorbing ideals for
various lattice-theoretic construction such
as direct products, homomorphism images,
and homomorphic inverse images. In future
work, we plan to focus on the concepts of
L-fuzzy (m,n)−absorbing ideals and their
prime spectrum.
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