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ABSTRACT

This research presents a mathematical model for understanding the dynamics of
typhoid fever, incorporating age structure, vaccination, and treatment effects. The
model captures the complexities of typhoid transmission by considering different
age groups, which exhibit varying susceptibility and contact rates. The homotopy
perturbation method is applied to solve the system of differential equations
governing the disease dynamics. The model explores the impact of vaccination
programs, treatment interventions, and age-specific factors on reducing
transmission rates and controlling outbreaks. Sensitivity analysis is performed to
identify key parameters that influence disease progression, including the basic
reproduction number. The results highlight the importance of targeting vaccination
and treatment strategies toward specific age groups to enhance intervention
efficacy. Numerical simulations demonstrate that increasing vaccination coverage
and treatment rates significantly reduce the spread of typhoid fever. The findings
provide valuable insights for optimizing public health policies aimed at managing
typhoid fever, particularly in regions with limited resources. This approach offers a
robust framework for assessing the effectiveness of control measures and improving

disease management.
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INTRODUCTION

Mathematical modeling is a crucial tool for understanding the transmission dynamics of

infectious diseases like typhoid fever, a bacterial infection caused by salmonella typhi typhoid

fever is a public health concern in areas with poor sanitation and contaminated water, with

symptoms such as high fever, abdominal pain, and gastrointestinal distress. If left untreated, it can

lead to severe complications or death (Keshav et al, 2019). Recent advancements in modeling have

incorporated factors such as age structure, vaccination, and treatment effects. The homotopy

perturbation method has been particularly effective in solving differential equations that describe
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disease dynamics (Bwalya et al, 2022). Including age structure allows models to more accurately
capture the transmission patterns and the effectiveness of interventions like vaccination in
different demographic groups (Dougan and Baker 2014). Vaccination and treatment are key
components in controlling typhoid fever. Vaccination reduces the susceptible population, while
treatment helps alleviate symptoms and prevent complications. Modeling these interventions
helps researchers evaluate the effectiveness of control measures and optimize strategies (Amouch
and Karan 2023). Children are especially vulnerable to severe illness and mortality from typhoid
fever, and they can serve as reservoirs for transmission. Population dynamics, including factors
like migration and urbanization, also affect the spread of the disease. Models that incorporate
these factors provide insights into the long-term trends of disease transmission (Kolawole et al,
2022, Kuehn et al, 2022). Overall, mathematical models combining epidemiological data, age-
specific factors, and interventions provide valuable insights into typhoid fever dynamics. These
models aid in evidence-based decision-making, contributing to the effective control of typhoid
fever and other infectious diseases (Liu, 2023). Efforts to control typhoid outbreaks typically
involve a combination of preventive and responsive measures aimed at interrupting the
transmission of the bacterium and treating infected individuals. Water and sanitation
interventions play a crucial role in preventing cholera transmission and reducing the burden of
the disease. Recent control measures for Typhoid include (Masuet and Atouguia, 2021, Melnikov
et al, 2023). Improved Water and Sanitation Infrastructure: Investing in infrastructure for clean
water supply, sanitation facilities, and proper waste management is fundamental in preventing
typhoid outbreaks. Providing access to safe drinking water and promoting hygienic practices, such
as hand washing and proper food handling, can significantly reduce the risk of Typhoid
transmission. Vaccination Campaigns oral typhis vaccines (OCVs) have been developed and
deployed in Typhoid-endemic areas as part of targeted vaccination campaigns. OCVs can provide
short to medium-term protection against Typhoid and are often used in outbreak response efforts
and in areas with a high risk of Typhoid transmission (Muchmore et al., 2020, Muscat et al., 2022).
Surveillance and early detection: Strengthening surveillance systems for Typhoid and enhancing
early detection and response mechanisms are critical for containing outbreaks and preventing the
spread of the disease. Rapid diagnostic tests, along with effective reporting and monitoring
systems, enable health authorities to identify and respond to Typhoid cases promptly
(Muthuirulandisethuvel et al., 2020). Health education and community engagement in promoting
awareness about typhoid transmission, symptoms, and preventive measures through health
education campaigns can empower communities to take proactive steps in preventing the disease.
Engaging with community leaders and stakeholders fosters community participation and
ownership of typhoid control efforts, leading to sustainable outcomes. Treatment and case
management. Providing prompt and appropriate treatment for typhoid cases is essential for
reducing morbidity and mortality associated with the disease, along with the administration of
antibiotics in severe cases. Ensuring access to healthcare facilities equipped to manage Typhoid
cases helps prevent complications and reduce the spread of the disease (Lawal et al., 2023).
Integrated Approach: Implementing a multi-sectorial and integrated approach to Typhoid control,
involving collaboration between health authorities, water and sanitation agencies, non-
governmental organizations, and other stakeholders, is essential for addressing the complex
determinants of cholera transmission. Coordinated efforts across various sectors can maximize
the impact of control measures and contribute to sustainable Typhoid prevention and control
strategies (Kolawole et al.2023).
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Formulation of the model

We develop a model with Bacteria population, NB denoted by B(t) and human population,
NH. The populations are subdivided into different epidemiological classes: Susceptible of the
children (SC), Susceptible of the adult (SA), vaccination (V), Infected (I), Treatment (T), Recovered
(R), and bacteria subclasses. The models assumes that human population will be recruited to
susceptible compartment of the children at the rate Ac ,and susceptible compartment of the adult
at the rate AA, and susceptible individuals are infected at the rate of _aB  where ¢ is the rate

k+B
B

of salmonella Typhi injections in foods and drinks k + B is the probability of probability of
individuals in consuming foods or drinks contaminated with typhoid causing bacteria. All human
population have their natural death at the rate H ,and infected individuals die from typhoid at the
rate O . The treatment rate of infected individual infant is represented by 7 , excretion of
Salmonella Typhi bacteria by the infected children and adult to the environment at the rate M and
salmonella Typhi will die to the environment at the rate ¥, the parameter ? represent hygiene

rate, ¥1:¥2 denote vaccination rate of children and adult, while P1s P2 represents waning rate
of immunity. The below diagram in figure (1) represent the model flow chart.

Figure 1: Schematic flow of the model formulation
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Table 1: Description of parameters

Parameter Parameter descriptions

SC(t) The number of susceptible individual children
SA(t) The number of susceptible adult individual
V(t) The number of vaccinated individual
I(t) The number of infected individual
T(t) The number of Treated individual
R(t) The number of Recovered individual
B(t) The number of Bacteria in the population
parameter  Description value references
w Hygiene rate 0.3 Kuehn et
al.(2022)
o Disease induced death rate 0.015 Kolawole et
al.(2023)
L1y P> Waning rate of immunity 0.018682 Lawal et al.(2023)
H Natural death rate 1/60,000 Keshav et
al.(2019)
n Excretion rate of salmonella Typhoid 0.003 Kolawole et
al.(2022)
T Treatment rate of individuals 0.001744 | Muchmore et
al.(2020)
& Recovery rate of treatment individuals 0.0033142 | Bwalyaet
al.(2022)
VLY, Vaccination rate of Children and Adult 0.0002 Komarovkaya et
al.(2023)
G Rate at which children become adult 0.01 Assumed
K Concentration of salmonella bacteria in foods 50,000 Assumed
and water.
a The rate of salmonella Typhi injections in 10 Dougan and
foods and drinks Baker, 2014
Ac , AA Recruitment rate of children and adult 150,000.1 Muscat et
854 al.(2022)
v The rate at which salmonella Typhi will dieto | 0.001 Assumed
the environment

A compartmental based model for analysing the treatment of typhoid fever capturing age

structure and vaccine. The govern model is given by the system of non-linear ordinary differential

equation (1) below.

Formulated model

The equation (1) of Halson et, al (2021) was extended by incorporating the following novelty,

age structure, Vaccine and Treatment. The model equation is therefore given in equation (1)

inclusive of the above parameters. Hence we have
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ddstc = A, — (- W)AB[S, +S,1- (1 +,)S. + p — g5,
ds,

dt =Ap—A-W)A,B[S; + S, 1= (1 +y,)S, + ppv + 9S,
dv

at WiS, +Saw, — (P + o)V — v

%:(1—W)ZCB[SC+SA]+(1—W)2.AB[SC+SA]—(,u+Z'+5)|
dT
—=d -l —ul
TR
dR
— =&l — 1R
T
dB
—=1-w)nl -8B
g~ Len
_ Ba
T K+ B where S0 =5.(0 =5, V(O =V, 10)=i; TO) =, RO)=r,
B(0)=b, >0

ANALYSIS OF THE MODEL

Existence and Uniqueness of Model Solution

)

Feasible Region: The analysis of the feasible was done, in which the model solution is

bounded. The total human population (NH) considered in above model are

N=S,+S.+V+I+R

dN
E:AC —HSc —W Sc v+ P+ Ay — 1S, — S, Y Sc W, S, - pv

—p,v—puv—pl —d +d — ul — 1R
By method of integrating factor
N-IF =[IF -Qdt
(AC +AA) _I_Zf;ttc
at t=0

N(t) =

+A,

N(O):AC N +A,
U

C C=N(@)-Dctha
y7i

)
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A +A, +(N(O)—AC +AA)£“‘
H U

t—om tom

NG <| A A L Ny - Ao Aay,- "‘}leN(t)<le{
u I

A +A
N, () < e T ha

3)

Also the bacteria population is. Thus, the feasible solution of the system equation of the model

enters and remains in the region.

= (S., SV, 1, T,R)eR 58,8, >0V, 1,T,R> 0N, <e A

2w
(AC + AA)(]‘_ W)77
y7Y

is positive invariant. Therefore, the model is well posed epidemiologically and mathematically.

[ =BeR,:B=20:N;<

Hence, it is sufficient to study the dynamics of the basic model in L.
Positivity and boundedness of model solution

The initial condition of the model was assumed to be nonnegative and now, we also proof

that the solution of the model is positive.
Theorem 1

let,I' = {(S¢, S, v, 1,T,R,B) € R7;Sc, 20,S,, =0,, 20,1, >0,T, >0,R, >0,B, >0}

Then the solution of {S¢+Sa: T R Bjgpe positive for t 20 in the region of I < [01] = 97
Proof

From the system of differential equation, we solve the equation one after the other.
First Equation;

03 AL - W)ABIS, +S,]— (u+w)S. + oGS,
dt (5)
dS.
%> (e, 1 9)S, 00
t
dS

50> > —(u+y, +g)dt

Then solving using method of integrating factor and applying condition, we obtained

Sc(t) >Sg, - ¢ W9t >0

(6)
Then solving the second equation,
S8 A= A WALBISe + 5,1~ (4 )8, + ooy + 85
ds,

(ﬂ T, )d

Sat)

Similarly using integrating factor and applying conditions, it gives
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SA(t)-K(’”'/IZ)t > J.g(ﬂﬂlfz)tdt

L plutya)t
= S,()2S, () (20 ”

Also we took the third equation of

dv
E:‘/QSC +y,S, = (o, + py)v — uv

dv
at 2 —(p,+ p, + )V

Vv
m 2 _(pl TPt y)dt

Also using integrating factor and applying the condition as discussed above it is obtained that,

V(t) . K(Pﬁpz"'#)t > J.K(Pr"/’z*'/l)t .0dt
V(t) et S 4
V(t) >V, -t >0

(8)
Taking the fourth equation from (1) to obtain its positivity, it is obtained that
% =(A-wW)A.B(Sc +S,)+(@—wW)A,B(Sc +S,) - (u+7+0)I
iZ—(,u+z'+§)dt
()
|(t) _g(,u+r+5)t > J‘g(,u+r+5)tdt
() =1, - 1(t)- 0¥ >0 9

This completes the proof of the theorem, and it shows that the solution of the model is positive.
Existence of disease free equilibrium state
To analyse the disease free-equilibrium. Let equation (1) be subjected to zero, evaluating it

atSc=5Sa=V =1 =T =R =B =0 49 solving for the non-infected and non-carrier

state variables.

S — + p2v+gAC
S :AA+p2V+gSc . A (ury, +9)
ho (u+y,) ' (u+y,)
S :AA(ﬂ"'Wl"‘g)"'sz"‘gAc
o (u+y, +9)(u+y,) CwnSc +Sa— (o V -V =0
V = WiSc +¥,S,
wi1Sc +w,Sa=(p, + p, + 1)V (o, +p, + 1) (10)
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A +,D1V A (:u+l//1+g)+pzv+gAC l//lS +l/IZSA 0000
ﬂ+‘//1+g) ((u+y, +9)(u+y,) (p1+,02+y)

Endemic equilibrium point

S.,S,.Vy,15,T,.R,, B, :[(

We represent our endemic equilibrium pointas g~ (s_*, s, v*, 1*,T*, R", B*)

Theorem 2
There exists a unique equilibrium of system of when Ro =1
Proof:

To  establish this theorem, equate (S::SA.V.1L.T.R.B)=0 yjth (

(Sc™»SA" V51T, TR, BY) representing the respectively compartments of the model

equations to obtain in equation (1 1) below

kS

C

~(@-W)AB (S +5,) ~ (u+y,)S: + oV —gS,”
—(1—W)/1 B*(Sc +S, ) —(u+w,)S, +p V" +0S.
0=w,Sc +¥,S, (o + oV = V"
0=(1-W)AB*(S." +S,) +A-W)A,B* (S +S, ) —(u+7+5)I"

(11
O=d"—&eT"—ul”
O=cT"—1R"
0=(@1-w)nl*—B
From the last equation of system (1 1) we have
B _A-WnA-@)A.B (Se +8,) +(L-wW)A,B (S +S,7)
v(u+17+90)
| A-W)A.B* (S +S, ) +@-W)A,B"(S." +S,")
(u+7+9)
o ETAWAB (S +8,) +A-WAB (S +8,) - _¥iSc +¥Sy
ple+p)(p+7+9) , (ortprt4) (49
7o TA-WAB (S +5,7) + (L-W)A,B"(Sc” +5,)
(e+1)(u+7+9)

~(@-W)A.B'S, +pV~
{A-W)AB" +(u+y,)+ 0}
o Ay —{1-W)A,B +g}¥S. +pV°
Y {0-WAB +(uty,)}

Basic reproduction number R-

There are two diseases state but only one way to create new infections. Hence exposed and

infected compartments of the model are involved in the calculation of R..

Where R =P(G—4l)
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e _[oheo ], [
' oX. ' OX.

J J (1 3)
F is the new infections, while the V are transfers of infections from one compartment to another.

V,=—(u+7+0),V,=d —(e+ )T, V, =Q— @)l —B

Where "1
(u+7+0) 0 0
V= -7 (e+un) 00
-1l-w)y 0 1%
v(e+ 1) 0 0
= 15 Jvr v(u+1+9) 0
Tt ET D | erip-am 0 (ermurced)
R, = 20— )’ nAc (u+v,)(Ac + V) + A, (u+y, +9) + oV +9AL)
v(p+t+0)(u+y, +9)(u+7+95) (14)

Local stability of disease free equilibrium

The disease-free equilibrium is locally asymptotically stable if the basic reproduction
number. R~ =1,
The characteristic polynomial of the Jacobian matrix of disease-free equilibrium is given by

1 e — Al =0 where is the Eigen value and I is the identity matrix. The Stability criterion of
Disease Free Equilibrium, the general Jacobian matrix has been calculated as obtained. The local

stability of the disease free equilibrium of the Jacobian matrix of the system of (1), whereas "' are
the eigen-values, I the identity matrixand ¥ =1.2:3.---7 respectively. At disease free equilibrium
of equation (1), respectively the Jacobian matrix is obtained as;

~(uty+g) 0 p 0 0 0 0
g —(u+y,) 0 0 0 0 0
¥ ¥, —(pL+py + 1) 0 0 0 0
J, = 0 0 0 —(u+7+8) 0 0 0
0 0 0 T —(e+u) 0 O
0 0 0 0 e -u 0
0 0 0 (1- o)y 0 0 -v
, PE—1W=0
As discussed above that! ™

, this results to,
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a-4 0 yo) 0 0 0 0
g b-4 0 0 0 0 0
v, v, C—-A4 0 0 0 0
0 0 0 d-4 0 0 0 |=0
0 0 0 T e-4 0 0
0 0 0 0 e —u—-Aa 0
0 0 0 (Q-wpy O 0 -v—-A4
(15)

By using Atangana Belamus’s invariance principle by lower triangular matrix. We obtain,
therefore, a—(u+y,+9) ) b—=(u+y,) ) C=—(p+p,+H) ) d=—(u+7+9) )
e=—(e+ ) ’

A=ty +9) <04, =~(u+y,) <04 =—(p, + p, + 1) <0, 4, =~(u+7+6) <0
A =—(e+1) <04y =-u<0,4 =-v (16)

Hence, since all the eigen values are all negative, hence the disease free equilibrium is locally
asymptotically stable.

Local stability of endemic equilibrium

The Endemic equilibrium of the proposed Epidemic model is locally asymptotically stable if

R. <1 R.>1

We linearized each of the compartments by let

Sc =a+S.,5,=b+S," V=c+V' Il=e+1"T=x+T",R=y+R",B=z+B’

and unstable otherwise if

(17)
From the system of equation (17), we obtain

(:;1 = A, —[(1-w)A.za]-[(1- w) A, zb] - (u + w,)a+ p,C — ga+ higherorder+ non+ linearterms
% =A,-[1-w)i,za]-[(1- w)A,zb] - (e + v, )b + p,C — ga+ higherorder+ non+ linearterms

% =y, a+y,b—(p, + p,)c— uc+ higherorder+ non+ linearterms
(18)

=[(1-w)A.za] +[(1 - w) A, zb] +[(1- W) A,zb] - ( + 7 + &)e + higherorder + non+ linearterms

de
dt
% = 1€ — (& + )X + higherorder+non+ linearterms
d_)t/ = eX — uy + higherorder+non+inearterms

% = (1- w)ne —vz + higherorder+non+inearterms

Je, —Al=0
The Jacobian matrix of the system of were obtained, where‘ Ei ! , from respective

values of their endemic equilibrium points as obtained from (12)
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A -[1-w)A.z] p, 0 0 0 -(-wA.(a+h)
-[(1-w)A ,zb—-g] B oR 0 0 0 -(-wA,(a+h)
v, v, C 0 0 0 0
-(I-wA. z+(1-w)A,z 0 0 D 0 0 0 =0
0 0 0 T E O 0
0 0 0 0 & —U 0
0 0 0 (-wp 0 O -V

Where it is obtained that A=—AA-WAcz+(u+y, + g)], B=—1-WA,z+u+y,]

C=—(p+p,+1) D=—=(r+6+u) E=—(e+4) (19)
A-1 -[A-wAcz]  p 0 0 0 -(-wA,(a+h)
-[1-w)A,zb-g] B-1 0 0 0 0 -(-wA,(a+h)
v, v, C-2 0 0 0 0
—(L-wA z+(1-w)A,z 0 0 D-2 0 0 0 =0
0 0 0 T E-1 0 0
0 0 0 0 & -u-i 0
0 0 0 (@-ay 0 0 V-1
(A=A)B-A)C-A)D-A)E-A)F-A)C-1)=0 .The  Characteristics
polynomial is given by
A +aA’+a,A’ +alt vallvalt+al +a, @20)

Applying the Routh-Hurwitz criterion, it can be seen that all the eigen values of the
characteristics equation above have negative real part. Then the endemic equilibrium is locally
asymptotically stable.

Global stability of disease free equilibrium
At equilibrium where ©:-©z:Cs are constants, the global stability for the disease free
equilibrium is stable if R~ <Zunless otherwise. Consider the Lyapunov approach on the disease

class deduced as;

V(S,,S,,1,,1,,R,P.t)=C,I, +C,l, +C,1,

Vv
0'—=(:1|11+c:2|21+c3|3as|1 =l,=1l,=1,andl,=P
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Using Lyapunov function approach to proceed for the result for global asymptotic stability of
the proposed model at disease free equilibrium state. Let V (t, SC, SA, V, I, Q, R, B), on the disease

state, the derivatives of the respective state variables is deduced as:
C, I, +C,I, +C;l

V(L TB)= 3°3 as

dv : : -

—=C,I, +C,I, +C,l,

dt ,where C1<C2<C3
dv

at =C,d, +Cy(L-wnl, —=C,(u+ 7+ )1, —C, (e + 1)1, +C[A-W) A 1,5 ]
+Cl[(]-_W))“c ISSA] +C1[(1_W)/IAI3SC]+ Cl[(l_w)ﬁ“AISSA]

O <[C.r+C =W —C,(u+ 7+ 8)11, ~C, o+ 1)1, +[C,A-WAS

+C,A-WAS,+C(A-W)A,S: 1+ C,A-wW)A,S .11,

(22)
?j—\t/S[CZT—Cl(y+T+5)]I1—Cz(g—i-,u)lz+
[C,(1—W)A, M]WL[Cl(l—w);tc Ap(uty, +9)+pV +9Ac
C (H+y,+09) (u+y,+9)(u+y,)
’ 3

[C.A- ), — e Jipc,a-wya, Aalttyit O+ A

(1+y,+9) (u+y, +9)(u+y,)

1

Cc, <C,<C,,C,>0C, =~
Recall that (#+ 7+ ) at equilibrium

L-W) A (u+y, ) (A + o V) + Q=W A[A (e +y, +9) + o,V + AL ]+
d_V < L-W)A,(u+y,)+ (A + pV)A-WA[A (e +y, +9)]+(p,V +9A,) _1
dt (u+y +9)(u+y,)(u+7+6)

(23)
It is important to note that V=0, only when [=0, the substitution of I=0 into the model
system of equation (23) shows that
S - Ac + pv s - A(u+y,+9)+p,v+0Ac
Co — A
"o (et r9) ((+y +DW+V2) oo wel and based

on Lasalle’s invariance principle, Hence E, =0 is Globally Asymptotically stable whenever

R. <1

Global stability analysis for endemic equilibrium point

By employing Dulac criterion to proceed for the result for global asymptotic stability of modified
model.

G(X) =
Let X= (SC, SA, V, 1, T, R, B), where ScSa (24)
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ds 1
G( < ) =—[Ac _(1_W)2’CB(SC +SA)_(,U'H//1)SC + 0oV - gsc
dt ©  S.S,
_ A _(@-WAB A-WAB (uty) pv 9
ScS, S, S ScS,  ScS. S,
ds, 1
G(—~)= [Apn—Q=W)AB(Sc +S,) = (u+w;)Sa + pv + 05
dt ©  S.S,
A, (l_W)/’LAB_(1_W)2~AB_(,U+‘//2)+ PV +i
S.S, S, S S S,Sc S,
dv 1 A v, (pitp)v v
G(—) = Sc + + = + - -
(dt) 5.s, <o WiSc +v Sy — (o + pp)v—pv]= 5.5, 5.5, 5.5, 8.8,
G(d') [A-W)A.B(Se +S,)+A—W)A,B(Sc +S,) — (u+7+)I]
dt sCsA
_@-WiB (-WiB (-WAB (-WiB (ut7+0)
SCSA SA SASC SCSA SCSA (25)
dT 1 d & 4T
G(—) = d—a —uT]= - —
Ca) =55, | M= s "s.s, s.s,
drR 1 £T LR
G(—) = T — 1R] =
Cat’ SCSA[ #HRI= ScS,  ScSa
1 1-w)nl vB
a(fB) - ) L
dt”  S.S, ScS,  ScS,

Then we obtain

E(GX): 0 GdSC + 0 GdSA +i((3d_vj+g(@ﬂ)+i(@,d_1_j
dt 0S¢ dt oS, dt oV dt ol dt) oT dt

OR dt oB dt

d(GX):a( Ac _(1—W)/7.CB_(1—W)/7,CB_(,L1+I//1)+ PV Sg)

dt 0S¢ ScSa Sa Sc Sa ScSa
i A, (1_W)/1AB_(1_W))“AB_(/“+V/2)+ +i n
Al ScS,a S, Sc S S S Sc

vi v, (ptp)v  wv }L
SA C SCSA SCSA SCSA

v(
:((1 w)1.B (1—w)/105+(1—w)/1AB+(1—w)/1AB_(y+T+5)J+

| Sc S, Se .S,
a(d g_yT]+6[gT_yR]+
OT(SeS, ScSn ScS,) OR(ScS, ScS,
o(@l-wy B
( Sa SCSJ (26)

Then we obtain
Now we consider the parameter with and without state variables i.e those parameter without

S.S
are negative invariant as those with states variables are neglected not relevanceto ~ ¢~ A
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%(GX) o [ Ac _(ﬂ+wl)_g]+ o [_(ﬂ+w2)j+

T 8S. | ScS, S, S, ) &s, S¢S,
O _prp)v  pv | O (u+z+5)
oV ScSa ScSa) ol ScSa
d
@)= e () g+ () + (o v+ pv + (et 7 49)} <L
CYA

(27)

t R« >1 such that perseverance of

Hence the orbit of the region is epidemiologically stable a
the disease reduces and controlled at t > 1,

Numerical simulation
In this section, we apply the homotopy perturbation method to obtain an approximate
solution for the Typhoid model (1) by constructing the following correctional functional

a-p) 25 SO (w80 S, 8.0 95,0 V1) 0

a-p)E B (W BP0+ S, )5, 0+ 65,00 oV 1) | 0

dt dt
@-p) D o D50+ .8,0 (01 2V (- ¥ (1) -0
(28)
@) o AU (@ w0, )+ 5, @Kk + 40—+ + 6)1) | =0

a-p) 9T o T (o ) |0

@-p) dr;it) + p[dR(t) —(eT —,uR)j =0

dt
a- )80 o BY_ (0w 0)-ve(0)] -0

We can assume the following power series of P as solution for the model variables in (44) such

5.0=3 P50 (1) 5,(0= 375 (0) VE)=D2p", 10)= 207, 0) TW=3 07,0

’

that
R)= 307 ()

Evaluating (44) using (45) and subsequently collecting coefficients of powers of P ,for N = 1
yields the following system

0
AtN= O, coefficients of P are

1 2
AtN :1, coefficients of p are: Also atN = 2, coefficients of p are:
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0 0 0)+510 014, o 05 5 ) a1, 5 0)- 55,0+ i, )
"S;(‘L(Aa—(1—wma(bl(t)[sw(t)ﬁm(>]+b<>[ 50~ o 0+ 5,00+ o0 )
0y 0425000, 2 W0 0 0)

), s 5 O 0 )50 0 #2200 )
94,0+ s 0)

(o )- 4 0)

— ja-wh, -5

(29)
And so on. Solving system (28) using the initial conditions

5:(0) = Sc0. 5.(0) = 50, (0) = v5,i(0) =15, £(0) = &, 7(0) = 15, b(0) = b,

Also, evaluating (48) using the initial conditions the following results are obtained for the first
approximations

Scl(t) = (Ac _(1_W)ﬂ“cbo [Sco + SAO]_(IU + V’l)sco — 05, + plvo)t
() ( (:I-_W)/1 b [Sco+SA0]_(,U+‘//2)Sao+gsco+pzvo)[

) ( 15c0 T¥2Sa0 (p1+,02)vo_luvo)t

; (1 )b [sco"'SAo](/Ic"'AA)_(/‘H‘T"‘5)i0)t

)

(
(do — (& + 1) X
(5 So ﬂro)t
bl(t)_( ( _W)io _Vbo)t (30)
the second approximate solution is obtained:
A, -(1-w)ib - -

A, (1 W) [ ( )[Sco( )+SA0( )]+b ( {( ¢ ( W) ¢ O[Sco +SAO] (ﬂ+‘//1)sco gScO+p1V0) D ?
= (Aa - (1_ W)/iabo [Sco + SAO]_ (ﬂ uZ )Sao +080* szo)
- (,U Tyt Sci)(Ac - (1_ W)’icbo [Sco + SAO]_ (/’ + ‘//1)Sco 05t P1V0)+ P1(‘//1Sco iz (P1 TP )Vo - /’Vo)

Aa_(1_W)ia[b0(t){(/\c-(1-W)/cho[sco+SAo]-(ﬂ+t//1)Sco-gsco+plvo) } Wl v s, +SAo]j

"l
i, (t
&t
nt

(A, = LWy [50+ S0 ] (140 520+ 05,0+ 25
(/”""//z + g)(A (1 W)ﬂ“ b [sco + SAO] (ﬂ + W1) S0 =50 t ,01V0)+p2(%5c0 2% _(:01 + Pz)vo _/’NO)
v t)= ('//1( (LW [5.0+ 800 |- (41 )5~ 95,0+ %) t
‘H//z( (1 W)/1 b [Sco + SAo] (,u+ Wz)sao 05+ szo) (,01 tot /u)(%sco T¥Sno —(,01 +pz)‘/o _:UVO) 2
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(Ac - (1_ W)/q“cbo [SCO + SAO]
- (:u ! )Sco 05, + 2V
1-w) (n(L-w)i, —vi, )S.q +Spo |+t A+, | |12
iz(t)z ( (77( )o bo)[ ) AO] o( +[Aa_(1_w)/1abo[sco+3Ao] ] ( ¢ A) %
L _(/l TV, )SaO 08010V |
—(ﬂ T+ 5)((1_ W)bo[sco + SAO](”«: + /IA)_(IU tr+ 5)i0)
: t?
rz(t) = ((g(ﬂo - (5 + ﬂ)é:o)_ /U(gfo — M )))E
: : t?
bz (t): (n(l—W)((l—W)bo [Sco +Su ](ic +/1A)_(/"+T+5)|0)_V(ﬂ(l_w)lo _Vbo ))E 31)
Summing these results up gives the approximate series solution of the system given by
S.0-250  S.0-2s0) VO-34010-310  TO-3&0R0-2n0

) ’

B(t)= :Zobn (t)

RESULTS AND DISCUSSION

In this section, we conduct a numerical evaluation of the model results and discuss the
convergence of the obtained solution. Utilizing the base line parameter values outlined below
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Figures 2: Impact of children vaccination on model variables
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Figures 4: Impact of waning rate of adult vaccination on model variables
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Figures 5: Impact of waning rate of adult vaccination on model variables
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Figures 6: Impact of hygienic on model variables

The presented figures provide a comprehensive insight into the dynamics of a Typhoid
model, focusing on the impact of vaccination rates, waning immunity, and hygiene on the

(t), and the vaccinated

susceptible adult population Sa(®), susceptible children population Sc
populationv (t) .

Vaccination Rates and Population Dynamics

Figures 2 and 3 show that increasing vaccination rates for children positively correlates with
the susceptibility of both adult and child populations. Adult vaccination rates also increase
susceptibility faster, emphasizing the importance of considering different vaccination rates for
different age groups.

Waning Immunity and Vaccine Boosters

Figures 3 and 4 show that waning immunity rates in children and adults lead to increased
susceptible populations and reduced vaccinated ones, emphasizing the need for vaccine boosters
to counteract fast immunity waning.

Hygiene Dynamics

Figure 5 reveals that hygiene rates increase susceptibility levels for both adult and child
populations, but this does not provide significant protection. The study emphasizes the need for
comprehensive hygiene practices to mitigate the spread of Typhoid, emphasizing vaccination
rates, waning immunity, and hygiene in shaping population susceptibility. This provides a basis
for further public health strategies.

Conclusion

The mathematical modeling of typhoid fever dynamics, using the Homotopy Perturbation
Method, provides insights into disease transmission and control. It helps make informed decisions
for public health interventions, reducing typhoid fever burden and improving population health.
Regular refinement and validation with real-world data are crucial for improving predictive
accuracy.

Recommendation

The research emphasizes the significance of age-specific vaccination and treatment strategies
in controlling typhoid fever, emphasizing the need for targeted interventions in resource-
constrained settings, and suggests future research to account for environmental and
socioeconomic factors.
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