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ABSTRACT  

This research presents a mathematical model for understanding the dynamics of 

typhoid fever, incorporating age structure, vaccination, and treatment effects. The 

model captures the complexities of typhoid transmission by considering different 

age groups, which exhibit varying susceptibility and contact rates. The homotopy 

perturbation method is applied to solve the system of differential equations 

governing the disease dynamics. The model explores the impact of vaccination 

programs, treatment interventions, and age-specific factors on reducing 

transmission rates and controlling outbreaks. Sensitivity analysis is performed to 

identify key parameters that influence disease progression, including the basic 

reproduction number. The results highlight the importance of targeting vaccination 

and treatment strategies toward specific age groups to enhance intervention 

efficacy. Numerical simulations demonstrate that increasing vaccination coverage 

and treatment rates significantly reduce the spread of typhoid fever. The findings 

provide valuable insights for optimizing public health policies aimed at managing 

typhoid fever, particularly in regions with limited resources. This approach offers a 

robust framework for assessing the effectiveness of control measures and improving 

disease management. 

Keywords: Typhoid outbreaks, Age-structure, Basic reproduction number. 

Homotopy perturbation method, Sensitivity analysis. 

INTRODUCTION 

Mathematical modeling is a crucial tool for understanding the transmission dynamics of 

infectious diseases like typhoid fever, a bacterial infection caused by salmonella typhi typhoid 

fever is a public health concern in areas with poor sanitation and contaminated water, with 

symptoms such as high fever, abdominal pain, and gastrointestinal distress. If left untreated, it can 

lead to severe complications or death (Keshav et al, 2019). Recent advancements in modeling have 

incorporated factors such as age structure, vaccination, and treatment effects. The homotopy 

perturbation method has been particularly effective in solving differential equations that describe 

 

 

 

Article History: 

Received: October 12, 2024 

Accepted: May 28, 2025 

Published: August,28, 2025 

Copyright: © 2025 by the authors. 

This is an open-access article 

distributed under the terms of the 

Creative Commons Attribution 

License 

(https://creativecommons.org/licens

es/by/4.0/). 

Print ISSN: 2710-0200 

Electronics ISSN: 2710-0219 

mailto:mutairu.kolawole@uniosun.edu.ng
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


 
 
 
 

Ethiop J Nat Comp Sci 2025, Volume 5, Issue 2 

  799 

disease dynamics (Bwalya et al, 2022). Including age structure allows models to more accurately 

capture the transmission patterns and the effectiveness of interventions like vaccination in 

different demographic groups (Dougan and Baker 2014). Vaccination and treatment are key 

components in controlling typhoid fever. Vaccination reduces the susceptible population, while 

treatment helps alleviate symptoms and prevent complications. Modeling these interventions 

helps researchers evaluate the effectiveness of control measures and optimize strategies (Amouch 

and Karan 2023). Children are especially vulnerable to severe illness and mortality from typhoid 

fever, and they can serve as reservoirs for transmission. Population dynamics, including factors 

like migration and urbanization, also affect the spread of the disease. Models that incorporate 

these factors provide insights into the long-term trends of disease transmission (Kolawole et al, 

2022, Kuehn et al, 2022). Overall, mathematical models combining epidemiological data, age-

specific factors, and interventions provide valuable insights into typhoid fever dynamics. These 

models aid in evidence-based decision-making, contributing to the effective control of typhoid 

fever and other infectious diseases (Liu, 2023). Efforts to control typhoid outbreaks typically 

involve a combination of preventive and responsive measures aimed at interrupting the 

transmission of the bacterium and treating infected individuals. Water and sanitation 

interventions play a crucial role in preventing cholera transmission and reducing the burden of 

the disease. Recent control measures for Typhoid include (Masuet and Atouguia, 2021, Melnikov 

et al, 2023). Improved Water and Sanitation Infrastructure: Investing in infrastructure for clean 

water supply, sanitation facilities, and proper waste management is fundamental in preventing 

typhoid outbreaks. Providing access to safe drinking water and promoting hygienic practices, such 

as hand washing and proper food handling, can significantly reduce the risk of Typhoid 

transmission. Vaccination Campaigns oral typhis vaccines (OCVs) have been developed and 

deployed in Typhoid-endemic areas as part of targeted vaccination campaigns. OCVs can provide 

short to medium-term protection against Typhoid and are often used in outbreak response efforts 

and in areas with a high risk of Typhoid transmission (Muchmore et al., 2020, Muscat et al., 2022). 

Surveillance and early detection: Strengthening surveillance systems for Typhoid and enhancing 

early detection and response mechanisms are critical for containing outbreaks and preventing the 

spread of the disease. Rapid diagnostic tests, along with effective reporting and monitoring 

systems, enable health authorities to identify and respond to Typhoid cases promptly 

(Muthuirulandisethuvel et al., 2020). Health education and community engagement in promoting 

awareness about typhoid transmission, symptoms, and preventive measures through health 

education campaigns can empower communities to take proactive steps in preventing the disease. 

Engaging with community leaders and stakeholders fosters community participation and 

ownership of typhoid control efforts, leading to sustainable outcomes. Treatment and case 

management. Providing prompt and appropriate treatment for typhoid cases is essential for 

reducing morbidity and mortality associated with the disease, along with the administration of 

antibiotics in severe cases. Ensuring access to healthcare facilities equipped to manage Typhoid 

cases helps prevent complications and reduce the spread of the disease (Lawal et al., 2023). 

Integrated Approach: Implementing a multi-sectorial and integrated approach to Typhoid control, 

involving collaboration between health authorities, water and sanitation agencies, non-

governmental organizations, and other stakeholders, is essential for addressing the complex 

determinants of cholera transmission. Coordinated efforts across various sectors can maximize 

the impact of control measures and contribute to sustainable Typhoid prevention and control 

strategies (Kolawole et al.2023).  
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Formulation of the model 

We develop a model with Bacteria population, NB denoted by B(t) and human population, 

NH. The populations are subdivided into different epidemiological classes: Susceptible of the 

children (SC), Susceptible of the adult (SA), vaccination (V), Infected (I), Treatment (T), Recovered 

(R), and bacteria subclasses.  The models assumes that human population will be recruited to 

susceptible compartment of the children at the rate C , and susceptible compartment of the adult 

at the rate A , and susceptible individuals are infected at the rate of 
Bk

B



  where  is the rate 

of salmonella Typhi injections in foods and drinks  Bk

B

 is the probability of probability  of 

individuals in consuming foods or drinks contaminated with typhoid  causing bacteria. All human 

population have their natural death at the rate  , and infected individuals die from typhoid at the 

rate  . The treatment rate of infected individual infant is represented by  , excretion of 

Salmonella Typhi bacteria by the infected children and adult to the environment at the rate   and 

salmonella Typhi will die to the environment at the rate  , the parameter  represent hygiene 

rate, 21,
 denote vaccination rate of children and adult, while 21, 

represents waning rate 

of immunity. The below diagram in figure (1) represent the model flow chart. 

 

Figure 1: Schematic flow of the model formulation 
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Table 1: Description of parameters 

Parameter Parameter descriptions  

SC(t) The number of susceptible individual children 

SA(t) The number of susceptible adult individual 

V(t) The number of vaccinated individual  
I(t) The number of infected individual 

T(t) The number of Treated individual 

R(t) The number of Recovered individual 

B(t) The number of  Bacteria in the population 

parameter Description value references 

W Hygiene rate 0.3 Kuehn et 

al.(2022) 

  Disease induced death rate 0.015 Kolawole et 

al.(2023) 

21,
 

Waning rate of immunity 0.018682 Lawal et al.(2023) 

  Natural death rate 1/60,000 Keshav et 

al.(2019) 
  Excretion rate of salmonella Typhoid 0.003 Kolawole et 

al.(2022) 
  Treatment rate of individuals 0.001744 Muchmore et 

al.(2020) 
  Recovery rate of treatment individuals 0.0033142 Bwalya et 

al.(2022) 

21,
 

Vaccination rate of Children and Adult 0.0002 Komarovkaya et 

al.(2023) 

G Rate at which children become adult 0.01 Assumed 

K Concentration of salmonella bacteria in foods 

and water. 

50,000 Assumed 

  The rate of salmonella Typhi injections in 

foods and drinks 

10 Dougan and 

Baker, 2014 

AC  ,
 

Recruitment rate of children and adult 150,000.1

854 

Muscat et 

al.(2022) 
  The rate at which salmonella Typhi will die to 

the environment 

0.001 Assumed 

 

A compartmental based model for analysing the treatment of typhoid fever capturing age 

structure and vaccine.  The govern model is given by the system of non-linear ordinary differential 

equation (1) below. 

 

 

Formulated model 

The equation (1) of Halson et, al (2021) was extended by incorporating the following novelty, 

age structure, Vaccine and Treatment. The model equation is therefore given in equation (1) 

inclusive of the above parameters. Hence we have 
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ccAccc
c gSSSSBw

dt

dS
  11)(][)1(

 

cAAcAA
A gSSSSBw

dt

dS
  22 )(][)1(

 

  )( 2121 Ac SS
dt

dV

 

ISSBwSSBw
dt

dI
AcAAcc )(][)1(][)1(  

   (1) 

TTI
dt

dT
 

 

RT
dt

dR
 

 

BI
dt

dB
  )1(

 

BK

B







Where 0)0()0( sSS ac 
, 0)0( vV 

, 0)0( iI 
, 0)0( tT 

, 0)0( rR 
,

0)0( 0  bB
 

ANALYSIS OF THE MODEL 

Existence and Uniqueness of Model Solution 

Feasible Region: The analysis of the feasible was done, in which the model solution is 

bounded. The total human population (NH) considered in above model are 

RIVSSN cA 
 

RTIII

SSSSSS
dt

dN
ACAAACCc









2

1212211

              (2) 

By method of integrating factor  

QdtIFIFN 
 

CtN tAC 


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)(

)(

 at   t=0 

CN AC 



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                                                                                             (3)      

Also the bacteria population is. Thus, the feasible solution of the system equation of the model 

enters and remains in the region. 







)1)((
:0:

;0,,,,0.,;),,,,,(
6

w
NBB

NRTIVSSRTIVSS

AC
BB

AC
HACACH


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






 (4) 

is positive invariant. Therefore, the model is well posed epidemiologically and mathematically. 

Hence, it is sufficient to study the dynamics of the basic model in .  

 Positivity and boundedness of model solution 

The initial condition of the model was assumed to be nonnegative and now, we also proof 

that the solution of the model is positive. 
Theorem 1 

  0,0,0,0,0,0,0;),,,,,,(, 0000000

7  BRTISSRBRTISSlet ACAC   

Then the solution of  BRTISS AC ,,,,,,  are positive for t  0 in the region of 
 7]1,0[   

Proof 

 From the system of differential equation, we solve the equation one after the other. 
First Equation; 

ccAccc
c gSSSSBw

dt

dS
  11)(][)1(

                              (5)              

)()( 1 tSg
dt

dS
c

C  
 

 dtg
tS

dS

c

C  1
)(



                                                                                                     

Then solving using method of integrating factor and applying condition, we obtained                                                                                    

0)(
)(

0
1 
 tg

CC StS


                                                                                              (6) 

Then solving the second equation, 

CAACAA
A gSSSSBw

dt

dS
  22 )(][)1(

                                    

 dt
tS

dS

A

A
2

)(
 

                                                                                                               
Similarly using integrating factor and applying conditions, it gives 
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
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Also we took the third equation of  

  )( 2121 AC SS
dt

dV
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dt
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 dt
t

dV



 21

)(                                                                                    

Also using integrating factor and applying the condition as discussed above it is obtained that, 

 


dttV
tt

0)(
)()( 2121  

 

0)(
)( 21 


CtV
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0)(
)(

0
21 
 t

VtV
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                                                                                              (8) 

Taking the fourth equation from (1) to obtain its positivity, it is obtained that   

ISSBwSSBw
dt

dI
ACAACC )()()1()()1(  

                       

 dt
tI
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                                                                                         (9) 

This completes the proof of the theorem, and it shows that the solution of the model is positive. 

Existence of disease free equilibrium state    

 To analyse the disease free-equilibrium. Let equation (1) be subjected to zero, evaluating it 

at 0'''''''  BRTIVSS AC  and solving for the non-infected and non-carrier 

state variables.  
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                     Endemic equilibrium point 

We represent our endemic equilibrium point as ),,,,,,(  BRTIVSSE AC
,  

Theorem 2 

There exists a unique equilibrium of system of when 10 R  

Proof:  

To establish this theorem, equate 0),,,,,,( BRTIVSS Ac with (
),,,,,,( 

BRTIVSS AC representing the respectively compartments of the model 

equations to obtain in equation (11) below  
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          Basic reproduction number *R  

There are two diseases state but only one way to create new infections. Hence exposed and 

infected compartments of the model are involved in the calculation of *R . 

Where 
)(* IGR  
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F is the new infections, while the V are transfers of infections from one compartment to another. 
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                           Local stability of disease free equilibrium 

The disease-free equilibrium is locally asymptotically stable if the basic reproduction 

number. 1* R . 

The characteristic polynomial of the Jacobian matrix of disease-free equilibrium is given by 

0||  IJ iE 
where is the Eigen value and I is the identity matrix. The Stability criterion of 

Disease Free Equilibrium, the general Jacobian matrix has been calculated as obtained. The local 

stability of the disease free equilibrium of the Jacobian matrix of the system of (1), whereas i are 

the eigen-values, I  the identity matrix and 7,...3,2,1i  respectively. At disease free equilibrium 

of equation (1), respectively the Jacobian matrix is obtained as; 
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As discussed above that
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 By using Atangana Belamus’s invariance principle by lower triangular matrix. We obtain, 

therefore, 
)( 1 ga  

, 
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, 
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   (16)              

Hence, since all the eigen values are all negative, hence the disease free equilibrium is locally 

asymptotically stable. 

                                Local stability of endemic equilibrium 

The Endemic equilibrium of the proposed Epidemic model is locally asymptotically stable if 

1* R
 and unstable otherwise if 

1* R
 

We linearized each of the compartments by let 


 BzBRyRTxTIeIVcVSbSSaS AACC ,,,,,,
          (17) 

From the system of equation (17), we obtain 
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The Jacobian matrix of the system of were obtained, where
0 IJ iEi


, from respective 

values of their endemic equilibrium points as obtained from (12) 
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polynomial is given by 

7

1

6

2

5

3

4

4

3

5

2

6

1

7
aaaaaaa   

                                                         (20) 

Applying the Routh-Hurwitz criterion, it can be seen that all the eigen values of the 

characteristics equation above have negative real part. Then the endemic equilibrium is locally 

asymptotically stable. 

 

 

 

Global stability of disease free equilibrium 

At equilibrium where 321 ,, CCC  are constants, the global stability for the disease free 

equilibrium is stable if 1* R unless otherwise. Consider the Lyapunov approach on the disease 

class deduced as; 

3322112121 ),,,,,,( ICICICtPRIISSV 
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dt
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Using Lyapunov function approach to proceed for the result for global asymptotic stability of 

the proposed model at disease free equilibrium state. Let V (t, SC, SA, V, I, Q, R, B), on the disease 

state, the derivatives of the respective state variables is deduced as: 

V (t, I, T, B) = 332211 ICICIC 
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It is important to note that V=0, only when I=0, the substitution of I=0 into the model 

system of equation (23) shows that 
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 at t→∞, w<1 and based 

on Lasalle’s invariance principle, Hence
00 E

 is Globally Asymptotically stable whenever 

1* R
 

                                         Global stability analysis for endemic equilibrium point 

By employing Dulac criterion to proceed for the result for global asymptotic stability of modified 

model.  

Let X= (SC, SA, V, I, T, R, B), where AC SS
XG

1
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Then we obtain 

Now we consider the parameter with and without state variables i.e those parameter without 

are negative invariant as those with states variables are neglected not relevance to ACSS
 



 
 
 
 

Ethiop J Nat Comp Sci 2025, Volume 5, Issue 2 

  811 

 










 


































 





























ACACAC

ACAAAAC

C

C

SSISSSSV

SSSS

g

SSSS
GX

dt

d

)()(

)()(

21

21





                                    

    1)()()()(
1

2121   g
SS

GX
dt

d
C

AC                   (27) 

Hence the orbit of the region is epidemiologically stable at 1* R  such that perseverance of 

the disease reduces and controlled at 1t . 

 

                                               Numerical simulation  

In this section, we apply the homotopy perturbation method to obtain an approximate 

solution for the Typhoid model (1) by constructing the following correctional functional 
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We can assume the following power series of 
p

 as solution for the model variables in (44) such 

that 
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Evaluating (44) using (45) and subsequently collecting coefficients of powers of
p

, for 1n  

yields the following system 

At 0n , coefficients of 
0p

are 

At 1n , coefficients of 
1p

are: Also at 2n , coefficients of 
2p

are: 
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                                                                                                                                                               (29) 

And so on. Solving system (28) using the initial conditions
              0000000 0,0,0,0,0,0,0 bbrriivvssss aacc  

, 

Also, evaluating (48) using the initial conditions the following results are obtained for the first 

approximations  
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  (30)  

the second approximate solution is obtained: 
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                                  Summing these results up gives the approximate series solution of the system given by  
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RESULTS AND DISCUSSION 

In this section, we conduct a numerical evaluation of the model results and discuss the 

convergence of the obtained solution. Utilizing the base line parameter values outlined below  

 

  
 

Figures 2: Impact of children vaccination on model variables  
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Figures 3: Impact of adult vaccination on model variables 

 

Figures 4: Impact of waning rate of adult vaccination on model variables 

 

Figures 5: Impact of waning rate of adult vaccination on model variables 
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Figures 6: Impact of hygienic on model variables 

The presented figures provide a comprehensive insight into the dynamics of a Typhoid 

model, focusing on the impact of vaccination rates, waning immunity, and hygiene on the 

susceptible adult population  tS A , susceptible children population  tSC , and the vaccinated 

population  tV .  

Vaccination Rates and Population Dynamics   

Figures 2 and 3 show that increasing vaccination rates for children positively correlates with 

the susceptibility of both adult and child populations. Adult vaccination rates also increase 

susceptibility faster, emphasizing the importance of considering different vaccination rates for 

different age groups. 

Waning Immunity and Vaccine Boosters  

Figures 3 and 4 show that waning immunity rates in children and adults lead to increased 

susceptible populations and reduced vaccinated ones, emphasizing the need for vaccine boosters 

to counteract fast immunity waning. 

Hygiene Dynamics  

Figure 5 reveals that hygiene rates increase susceptibility levels for both adult and child 

populations, but this does not provide significant protection. The study emphasizes the need for 

comprehensive hygiene practices to mitigate the spread of Typhoid, emphasizing vaccination 

rates, waning immunity, and hygiene in shaping population susceptibility. This provides a basis 

for further public health strategies. 

 

 Conclusion 

The mathematical modeling of typhoid fever dynamics, using the Homotopy Perturbation 

Method, provides insights into disease transmission and control. It helps make informed decisions 

for public health interventions, reducing typhoid fever burden and improving population health. 

Regular refinement and validation with real-world data are crucial for improving predictive 

accuracy. 

Recommendation 

The research emphasizes the significance of age-specific vaccination and treatment strategies 

in controlling typhoid fever, emphasizing the need for targeted interventions in resource-

constrained settings, and suggests future research to account for environmental and 

socioeconomic factors. 

Declaration of Competing Interest 



 
 
 
 

Ethiop J Nat Comp Sci 2025, Volume 5, Issue 2 

  816 

                                The authors declare that there are no conflicts of interest. 

Acknowledgment. 

Authors appreciate efforts of academic staffs of the Department of Mathematical Sciences, Osun 

State University and anonymous reviewers for this manuscript. 

Financial Support 

No funds was received 

Data Availability Statement  

Data set generated during this research are readily available from the corresponding author on 

reasonable request. 

REFERENCES 

Amouch, M., & Karim, N. (2023). Mathematical modeling of COVID‐19 and Omicron outbreak 

spread: Optimal control approach for intervention strategies. Optimal Control 

Applications and Methods, 44(5), 2916–2937. https://doi.org/10.1002/oca.3019 

Bwalya, P., Solo, E. S., Chizimu, J. Y., Shrestha, D., Mbulo, G., Thapa, J., Nakajima, C., & Suzuki, Y. 

(2022). Characterization of embB mutations involved in ethambutol resistance in multi-

drug resistant Mycobacterium tuberculosis isolates in Zambia. Tuberculosis, 133, 

102184. https://doi.org/10.1016/j.tube.2022.102184 

Dougan, G., & Baker, S. (2014). Salmonella entericaSerovarTyphi and the Pathogenesis of 

Typhoid Fever. Annual Review of Microbiology, 68(1), 317–336. 

https://doi.org/10.1146/annurev-micro-091313-103739 

Keshav, V., Potgieter, N., & Barnard, T. (2019). Detection of Vibrio cholerae O1 in animal stools 

collected in rural areas of the Limpopo Province. Water SA, 36(2), 167. 

https://doi.org/10.4314/wsa.v36i2.183724 

Kolawole, M. K., Odeyemi, K. A., Oladapo, A. O., & Bashiru, K. A. (2022). Dynamical Analysis and 

Control Strategies for Capturing the Spread of COVID-19. Tanzania Journal of Science, 

48(3), 680–690. https://doi.org/10.4314/tjs.v48i3.15 

Kolawole, M. K., Popoola, A. O., Odeyemi, K. A., & Bashiru, K. A. (2023). An Approximate Solution 

of Fractional Order Epidemic Model of Typhoid using the Homotopy Perturbation 

Method. UNIOSUN Journal of Engineering and Environmental Sciences, 5(1). 

https://doi.org/10.36108/ujees/3202.50.0180 

Kolawole, M., Oluwarotimi, A., Odeyemi, K., & Popoola, A. (2023). Analysis of Corona-Virus 

Mathematical Model in Asymptomatic and Symptomatic Cases with Vaccine using 

Homotopy Perturbation Method. Journal of Applied Computer Science & Mathematics, 

17(1), 20–27. https://doi.org/10.4316/jacsm.202301003 

Komarovskaya, E. I., &Perelygyna, V. (2023). Assay of Diphtheria Vaccine Potency by Intradermal 

Challenge Test. Epidemiology and Vaccinal Prevention, 22(4), 12–23. 

https://doi.org/10.31631/2073-3046-2023-22-4-12-23 



 
 
 
 

Ethiop J Nat Comp Sci 2025, Volume 5, Issue 2 

  817 

Kuehn, R., Stoesser, N., Eyre, D., Darton, T. C., Basnyat, B., & Parry, C. M. (2022). Treatment of 

enteric fever (typhoid and paratyphoid fever) with cephalosporins. Cochrane Database 

of Systematic Reviews, 2022(11). https://doi.org/10.1002/14651858.cd010452.pub2 

Lawal, N., Abdullahi, S. A., &Abolude, D. S. (2023). Physicochemical Characteristics and Fish 

Abundance and Diversity of Mairua Reservoir Water, Funtua, Katsina State, North-

Western Nigeria. Journal of Applied Sciences and Environmental Management, 27(1), 

125–132. https://doi.org/10.4314/jasem.v27i1.18 

Liu, B. (2023). Analysis on the current situation, problems and potential solutions for the Chinese 

precious metals futures market. BCP Business & Management, 38, 1239–1244. 

https://doi.org/10.54691/bcpbm.v38i.3852 

Manesh, A., Meltzer, E., Jin, C., Britto, C., Deodhar, D., Radha, S., Schwartz, E., &Rupali, P. (2021). 

Typhoid and paratyphoid fever: a clinical seminar. Journal of Travel Medicine, 28(3). 

https://doi.org/10.1093/jtm/taab012 

Melnikov, V. G., Berger, A., Dangel, A., & Sing, A. (2023, April 25). Lateral flow immunoassay-

based laboratory algorithm for rapid diagnosis of diphtheria. Open Research Europe, 3, 

62. https://doi.org/10.12688/openreseurope.15038.1 

Muchmore, B., Muchmore, P., Lee, C. W., Alarcón-Riquelme, M. E., &Muchmore, A. (2020). 

Tracking Potential COVID-19 Outbreaks WithInfluenzalike Symptoms Urgent Care Visits. 

Pediatrics, 146(4). https://doi.org/10.1542/peds.2020-1798 

Muthuirulandi Sethuvel, D., DevangaRagupathi, N., Anandan, S., Veeraraghavan, B., &Sangal, L. 

(2020). Molecular epidemiology of C. diphtheriae shows rapid evolution of strains in 

India: An update from National Diphtheria Surveillance Network. International Journal 

of Infectious Diseases, 101, 372. https://doi.org/10.1016/j.ijid.2020.09.978 

Nthiiri, J., Lawi, G., Akinyi, C., Oganga, D., Muriuki, W., Musyoka, M., Otieno, P., &Koech, L. (2016). 

Mathematical Modelling of Typhoid Fever Disease Incorporating Protection against 

Infection. British Journal of Mathematics & Computer Science, 14(1), 1–10. 

https://doi.org/10.9734/bjmcs/2016/23325 

Palanivelu, B. (2022, September 30). Semi - Analytical Solution of Modelled Typhoid Fever 

Disease. Chettinad Health City Medical Journal, 11(03), 30–35. 

https://doi.org/10.24321/2278.2044.202226. 


