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Abstract  

In this paper we developed a deterministic mathematical model of cholera disease dynamics by 
considering direct and indirect contact transmission pathway. The model considers five 
compartments, namely susceptible humans, infectious humans, hospitalized humans, recovered 
humans and the Vibrio cholera pathogen in the environment. The model qualitative behaviors, 
such as the invariant region, the existence of a positive invariant solution, the two equilibrium 
points (disease-free and endemic equilibrium), and their stabilities (local as well as global 
stability) of the model are studied. Moreover, the basic reproduction number of the model is 
obtained. Finally, we performed sensitivity analysis and numerical simulations. The numerical 
simulation results show that reducing contact rate, improving hospitalization rate, and 
environmental sanitation are the most important activities to fight against cholera disease from 
the community.   
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ORIGINAL RESEARCH  

cyclic outbreaks occurring twice per year in 
endemic areas (Koelle, 2009 ). An estimated 3 
-5 million cases and over 100,000 deaths occur 
each year around the world. The current 
ongoing cholera outbreak has occurred largely 
on the African continent, particularly sub-
Saharan regions (Sun et al., 2017). More than 
14 African countries (including Nigeria, 
Cameroon, Democratic Republic of Congo, 
South Sudan, Somalia, Ethiopia, Kenya, 
Tanzania, Zambia, Malawi, Mozambique, 
Zimbabwe, South Africa, Eswatini and 
Burundi) have reported cholera cases since the 
beginning of 2023.  

Introduction  

Infectious diseases are still the leading cause 
of death and morbidity in the world. From 
this infectious diseases Cholera is a highly 
infectious disease which is endemic in many 
parts of Africa and Asia. It remains a 
significant public health threat in many 
countries worldwide mainly resource 
constrained settings (Usmani et al., 2021). 
Cholera infectious illness caused by infection 
of the intestine with the bacterium referred to 
as Vibrio cholera (Abubakar and Ibrahim, 
2022). The disease is extremely virulent and 
kills very fast that remains a significant threat 
to public health in the developing world, with 
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2023).

Cholera is transmitted primarily by ingestion of
contaminated water containing the bacterium Vibrio
cholera and has plagued the world for centuries.
The cholera bacterium is usually found in water
or food sources that have been contaminated by
feaces from a person infected with cholera (Usmani
et al., 2021). Cholera is most likely to be found and
spread in places with inadequate water treatment,
poor sanitation, and inadequate hygiene (Gashaw
Adane Erkyihun and Woldegiorgis, 2023). One
can get cholera by drinking water or eating food
contaminated with the cholera bacterium. It can be
transmitted either by direct and indirect transmission
pathways (Wang, 2022). Human-to-human (direct)
way of cholera transmission is from the infected indi-
vidual to the other individuals (touching, biting, and
sexual intercourse). Whereas indirect (environment-
to-human) way of transmission of cholera is through
ingesting vibrio cholera bacteria from contaminated
foods and waters. The disease can spread rapidly
in areas with inadequate treatment of sewage and
drinking water (Gashaw Adane Erkyihun and Wold-
egiorgis, 2023; Challa et al., 2022).

Epidemiologists and other researchers use math-
ematical modeling and numerical simulation for
scientific understanding about the dynamics and
preventive method of an infectious disease, for
determining sensitivities, changes of parameter
values, and forecasting. They use the most recent in-
formation to extrapolate the state and progress of an
outbreak and make predictions. Several mathemati-
cal models on cholera were developed by different
authors. From these research findings,some of the
scholars used deterministic model (Nyabadza et al.,
2019; Mukandavire and Morris Jr, 2015; Buliva et al.,
2023; Yang et al., 2019; Sulayman, 2014) and some
of the researchers used stochastic model (Tilahun
et al., 2020; Iddrisu et al., 2023). Nyabadza et al.
(2019), dynamics of cholera in the presence of limited
resources. They showed that their model exhibits
backward bifurcation and multiple equilibrium
point they also concluded that the cases of cholera
infection decrease if there are a sufficient number
of hospital beds. A mathematical model for the
transmission of cholera dynamics with a class of
quarantined and vaccination parameter as control
strategies is proposed by Ezeagu et al. (2019). They
reached to a conclusion that effective quarantine,
vaccination and proper sanitation reduce the disease
contact rates that eliminates the spread of cholera.
Onitilo et al. (2023) (2023),considered an SIR-V
type of infection model for cholera dynamics. The
other scholars used fractional order modeling (Rosa

and Torres, 2021; Baba et al., 2023).The remaining
scholars used optimal control strategies Berhe (2020);
Bakare and Hoskova-Mayerova (2021); Abubakar
and Ibrahim (2022).

But none of them consider the combined effect
of cholera disease transmission(direct & indirect)
with hospitalization of infectious individuals. In this
paper we consider above gaps in the development
of a cholera transmission dynamics mathematical
model.

The organization of the study are: Section 1 is
all about the background and literature review
done studies. In section 2 the full description and
formulation of the model is stated. In section 3
the model is analyzed. Section 4 is devoted on
numerical simulation and calibration of the model.
Our conclusions are discussed in section 5.

2 Model Description and Formula-
tion

We divided the population denoted by N(t) ac-
cording to the infection status into S(t)- susceptible,
I(t)- infected, R(t)- recovered, and H(t)- hospitalized
individuals at given time t. Moreover, C(t) is the
amount of concentration of Vibro cholerae in an envi-
ronment at time t. New susceptible individuals are
recruited into the community at a rate of Π a birth or
immigration rate of individuals, µ is the sum of the
natural death rate and population-dependent death
rate, or move to an infectious cohort by acquiring
cholera through contact with the aquatic reservoir at
a rate of bβ.

Population in the susceptible compartment will
be increased with a recruitment rate of Π. However,
its number decreases by the natural causing death
rate of µ and also moving to the infected compart-
ment with the rate of λ = bβC + βI . Population
in the infected compartment will be increased by
the contact rate of λ, and also its number decreases
by the natural causing death rate of µ, cholera
causing death rate τ ,and moving to the hospitalized
compartment with the treatment rate of (1 − α)ω
and the remaining αω proportion joins the recovered
subpopulation. Population in the hospitalized com-
partment increases from the infected compartment
with the treatment rate of (1−α)ω and decreases with
treatment with the recovery rate of φ and the natural
causing death rate of µ. Population in the recovered
compartment also increases by the recovery from
treatment rate of φ and natural recovery αω, but its
number will decrease by the natural causing death
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rate of µ. Infected individuals in the community
shed the pathogen population of Vibrio cholera into
the aquatic environment at rate of σ and at the rate
of ϑ Vibrio cholera pathogen population dies and
leave the community. Table 1 shows the description
of model parameters. The flow diagram of the model
is shown in Figure 1 below.

With regards to the above assumptions, the model
is governed by the following system of differential
equation:

dS
dt = Π− (bβ C + β I)S − µS
dI
dt = (bβ C + β I)S − (ω + τ + µ) I
dH
dt = (1− α)ωI − (µ+ φ)H
dR
dt = αωI + φH − µR
dC
dt = σ I − ϑC

(1)

With the initial condition

S(0) = S0> 0 , I(0) = I0 ≥ 0 H(0) = H0 ≥ 0 ,

R(0) = R0 ≥ 0 , C(0) = C0 ≥ 0

3 Model Analysis

3.1 Invariant Region

Let us determine a region in which the solution of
model (1) is bounded. For this model the total popu-
lation is N(S, I,H,R) = S(t)+ I(t)+H(t)+R(t) and
C(t). Then, differentiating N with respect to time we
obtain:

dN

dt
=
dS

dt
+
dI

dt
+
dH

dt
+
dR

dt
= Π− τI − µN

If there is no death due to the disease, we get

dN

dt
≤ Π− µN (2)

After solving Equation (2) and evaluating it as t −→
∞, we got N(t) −→ Π

µ . Similarly,

dC

dt
= σ I − ϑC ≤ σ

Π

µ
− ϑC (3)

After solving Equation(3) and evaluating it as t −→
∞, we got C(t) −→ σΠ

ϑµ . Therefore, the feasible so-
lution set of the system in equation (1) is the region
given by:

Ω =
{
(S, I,H,R,C) ∈ R5

+ : 0 ≤ S + I +H

+R ≤ Π

µ
C ≤ σΠ

ϑµ

}
Which is the feasible solution set for the model (1)
and all the solution set of (1) is bounded in it.

Figure 1: Flow chart of the pandemic Cholera disease transmission

3.2 Positivity of Solutions

Theorem 3.1. If S(0) > 0, I(0) > 0, H(0) > 0, R(0) >
0, C(0) > 0 are positive in the feasible set Ω, then the
solution set (S(t), I(t), H(t), R(t), C(t)) of system (1) is
positive for all t ≥ 0.

Proof. : We let τ = sup{t > 0 : S0(ν) ≥ 0 , I0(ν) ≥
0 , H0(ν) ≥ 0, R0(ν) ≥ 0, C0(ν) ≥ 0 for all ν ∈ [0, t]}.
Since S0(t)> 0 , I0(t) ≥ 0 , H0(t) ≥ 0 R0(t) ≥ 0 and
C0(t) ≥ 0, hence τ > 0. If τ < ∞, then automatically
S0(t) or I0(t) orH0(t) orR0(t)or C0(t) is equal to zero
at τ . Taking the first equation of the model

dS

dt
= Π− (bβ C + β I)S − µS (4)

Then, using the variation of constants formula the so-
lution of equation (4) at τ is given by

S(τ) = S0 exp

[
−
∫ τ

0
(bβ C + β I + µ) (S)ds

]
+

∫ τ

0
Π. exp

[
−
∫ τ

s
(bβ C

+ β I + µ(ν)dνds > 0

Moreover, since all the variables are positive in [0, τ ],
S(τ) > 0. It can be shown in a similar way that
I(τ) > 0, H(τ) > 0, R(τ) > 0, C(τ) > 0. which is
a contradiction. Hence τ = ∞. Therefore, all the so-
lution sets are positive for t ≥ 0. Thus the model is
meaningful and well-posed. Therefore, it is sufficient
to study the dynamics of the model in Ω.

3.3 Effective reproduction number & Cholera
Free Equilibrium Point (DFE)

When there is no disease in the population, I.e I =
C = 0, the disease free equilibrium occur and is ob-
tained by taking the right side of Equation (1) equal
to zero. Therefore the disease free equilibrium point
is given by:

E0 = (
Π

µ
, 0, 0, 0, 0) (5)
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We calculate the Effective reproduction number R0

of the system by applying the next generation ma-
trix method as laid out by (Van den Driessche and
Watmough, 2002). The first step to get R0 is rewrit-
ten the model equations starting with newly infective
classes:

dI
dt = (bβ C + β I)S − (ω + τ + µ) I
dC
dt = σI − ϑC

(6)

Then by the principle of next-generation matrix, we
obtained, The Jacobian matrices at DFE is given by

F =

( βΠ
µ

bβΠ
µ

0 0

)

and

V =

(
ω + τ + µ 0

−σ ϑ

)

FV−1 =
( βΠ

µ (ω+τ+µ) +
Π bβ σ

µ (ω+τ+µ)ϑ
bβΠ
µϑ

0 0

)
Therefore, the Effective reproduction number is
given us

REff =
βΠ (bσ + ϑ)

µϑ (ω + τ + µ)

= RC
Eff +RI

Eff

Tables 1: Description of parameters of the model (1).

Parameter Description

Π
Recruitment rate of individu-
als

β
Contact rate of susceptible in-
dividuals

τ
Disease induced death rate of
infected individuals

ϑ Clearance rate of the bacteria.

φ
Treatment rate of hospital-
ized individuals .

ω
Proportion of exposed indi-
viduals leaving the compart-
ment.

σ
Shading rate of infected indi-
viduals of the environment

µ Natural death rate

α
Proportion of infected indi-
viduals to recovered .

where RI
Eff = βΠϑ

µϑ (ω+τ+µ) &

RC
Eff = βΠbσ

µ (ω+τ+µ)

REff is a threshold parameter that represents
the average number of infection caused by one infec-
tious individual when introduced in the susceptible
population (Van den Driessche and Watmough,
2002).

Theorem 3.2. The DFE point is locally asymptotically
stable if REff < 1 and unstable if REff > 1.

Proof. The Jacobian matrix, evaluated at the disease-
free equilibrium E0 is:

J =


−µ −βΠ

µ 0 0 − bβΠ
µ

0 βΠ
µ − (ω + τ + µ) 0 0 bβΠ

µ

0 (1− α)ω −µ− φ 0 0
0 αω φ −µ 0
0 σ 0 0 −ϑ


From the Jacobian matrix we obtained some of the
eigenvalues are −µ,−(µ+ η) and the other eigenval-
ues are obtained from characteristic polynomial as

λ2 + ψ1λ+ ψ2 (7)

Where ψ1 = µ(ω + τ + µ)
[

ϑ
ω+τ+µ + 1−REff

]
and

ψ2 = µϑ(ω + τ + µ)(1−REff )
We applied Routh-Hurwitz criteria and by the prin-
ciple Equation (7) has strictly negative real root iff
ψ1 > 0 , ψ2 > 0 and ψ1ψ2 > 0. We see that both
ψ1 and ψ2 are positive whenever REff < 1.

Hence the DFE is locally asymptotically stable if
REff < 1.

Theorem 3.3. The equilibrium point E0 of the model (1)
is globally asymptotically stable if REff < 1 otherwise
unstable.

Proof. Consider the following Lyapunov function

L = ψ1I + ψ2C (8)

Differentiating equation (8) with respect to t gives

dL

dt
= ψ1

dI

dt
+ ψ2

dC

dt
(9)

Substituting dI
dt and dC

dt from the model (1), we get:

dL

dt
= ϑ

[
ψ1
bβΠ

ϑµ
− ψ2

]
C

+

[
(σ + τ + µ)

(
ψ1

βΠ

ϑµ (σ + τ + µ)
− 1

)
+ ψ2σ

]
I

Here take ψ1 =
σ

ω+τ+µψ2, then we have

dL

dt
= ϑψ2

[
bβΠσ

ϑµ (ω + τ + µ)
− 1

]
C

+ψ2σ

[(
βΠ

µ (ω + τ + µ)
− 1

)
+ 1

]
I
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Taking ψ2 = 1, & substituting REff we get

dL

dt
= ϑ

(
RC

Eff − 1
)
C + σRI

EffI

for S ≤ S0 = π
µ & dV

dt ≤ 0 for REff < 1 and dV
dt = 0

if and only if I = C = 0. Thus, the system (1) on
which dV

dt ≤ 0 isE0. Therefore by Lasalle’s invariance
principle, E0 is globally asymptotically stable in Ω.

3.4 The Endemic Equilibrium Point(EE)

The presence of disease in the population,(S(t) >
0; I(t) ≥ 0;H(t) ≥ 0, R(t) ≥ 0, C(t) ≥ 0), there ex-
ist an equilibrium point called endemic equilibrium
point denoted by E∗ = (S∗, I∗, H∗, R∗, , C∗) ̸= 0.
It can be obtained by equating each equation of the
model equal to zero. I.e

dS

dt
=
dI

dt
=
dH

dt
=
dR

dt
=
dC

dt
= 0

Then we obtain

S∗ =
ϑ (ω + τ + µ)

β (bσ + ϑ)

I∗ =
ϑµ (REff − 1)

β (bσ + ϑ)

H∗ =
(α− 1)µϑ(REff − 1)

(µ+ φ) (bσ + ϑ)

R∗ =
(αµ+ φ)µϑ(REff − 1)

(µ+ φ) (bσ + ϑ)

C∗ =
σµ (REff − 1)

β (bσ + ϑ)

Theorem 3.4. The endemic equilibrium E∗ of system (1)
is locally asymptotically stable in Ω if REff > 1.

Proof. The Jacobian matrix of system (1) is given as

J =


−bβ C − β I − µ −β S 0 0 −bβ S

bβ C + β I β S − µ− ω − τ 0 0 bβ S
0 (1− α)ω −µ− φ 0 0
0 αω φ −µ 0
0 σ 0 0 −ϑ


(10)

From the Equation (10), we see that

λ− µ = 0 ⇒ λ1 = −µ < 0 and

λ− (µ+ φ) = 0 ⇒ λ2 = −(µ+ φ) < 0

The remaining eigenvalues are obtained from evalu-
ating from characteristic polynomial as

λ3 + φ1λ
2 + φ2λ+ φ3 = 0 (11)

Where

φ1 =

[
σµ(ω + τ + µ)

ϑ(bσ + ϑ)

]
(β(bσ + ϑ)− 1)

+β(ϑ+ µ) + µ(R0 − 1) > 0, if β(bσ + ϑ) > 1

φ2 = χ1 − χ2 > 0, if χ1 > χ2

φ3 = µϑ(ω + τ + µ)REff > 0

where

χ1 = ((ω + τ)(σ + ϑ) + ϑ(ϑ+ µ))

[
µ(REff − 1)

bσ + ϑ

]
+µ(ω + τ + µ)(ϑ+ µ)) + ϑµ

χ2 =

[
bσµ(ϑ+ µ)(REff − 1)

bσ + ϑ

]
+
σµ(ω + τ + µ)

bσ + ϑ

+ϑ(ω + τ + µ)

Using Routh-Hurwitz criterion we have got that all
roots of characteristic polynomial equation have neg-
ative real parts if and only if φ1 > 0, φ2 > 0, φ3 > 0
and φ1φ2−φ3 > 0 for REff > 1. Hence, the endemic
equilibrium E∗ is locally asymptotically stable.

3.5 Bifurcation analysis

A bifurcation is a qualitative change in the nature of
the solution trajectories due to a parameter change.
The point at which this change take place is called a
bifurcation point. At the bifurcation point, a number
of equilibrium points, or their stability properties, or
both, change. We investigate the nature of the bifur-
cation by using the method, which is based on the use
of the center manifold theory, introduced in (Castillo-
Chavez and Song, 2004).

Theorem 3.5. (Castillo-Chavez and Song, 2004)) Let us
consider a general system of ODE’s with a parameter ϕ:

dx

dt
= f(x, ϕ), f : Rn ×R −→ Rn, f ∈ C2(Rn ×R)

(12)
Where x = 0 is an equilibrium point for the system in
Equation (12). That is f(0, ϕ) ≡ 0 for all ϕ. Assume the
following

M1 : A = Dxf(0, 0) = ( ∂f
∂xj

(0, 0)) is the linearization
matrix of the system given by (1) around the equilibrium
0 with ϕ evaluated at 0. Zero is a simple eigenvalue of A
and other eigenvalues of A have negative real parts;

M2 : Matrix A has a nonnegative right eigenvector w
and a left eigenvector v corresponding to the zero eigen-
value. Let fk be the kth component of f and

a =
n∑

k,i,j=1

vkwiwj
∂2fk
∂xi∂xj

(0, 0)

b =
n∑

k,i=1

vkwi
∂2fk
∂xi∂ϕ

(0, 0)
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The local dynamics of (1) around 0 are totally determined
by a and b.

i . a > 0, b > 0. When ϕ < 0 with |ϕ| ≪ 1, 0 is lo-
cally asymptotically stable and there exists a positive
unstable equilibrium; when 0 < ϕ ≪ 1, 0 is unsta-
ble and there exists a negative, locally asymptotically
stable equilibrium;

ii . a < 0, b < 0. When ϕ < 0 with |ϕ| ≪ 1, 0 is
unstable; when 0 < ϕ≪ 1, 0is locally asymptotically
stable equilibrium, and there exists a positive unstable
equilibrium;

iii . a > 0, b < 0. When ϕ < 0 with|ϕ| ≪ 1, 0 is un-
stable, and there exists a locally asymptotically stable
negative equilibrium; when 0 < ϕ ≪ 1, 0 is stable,
and a positive unstable equilibrium appears;

iv . a < 0, b > 0. When ϕ changes from negative to
positive, 0 changes its stability from stable to unsta-
ble. Correspondingly a negative unstable equilibrium
becomes positive and locally asymptotically stable.

In particular, if a < 0 and b > 0,then the bifurcation
is forward; if a > 0 and b > 0,then the bifurcation is
backward. Using this approach, the following result may
be obtained:

Theorem 3.6. The model in system(1) exhibits forward
bifurcation at REff = 1.

Proof. : We prove using center manifold theorem
(Castillo-Chavez and Song, 2004) the possibility of bi-
furcation at REff = 1. Let S = x1, I = x2, H = x3,
R = x4 and C = x5. In addition, using vector no-
tation x = (x1, x2, x3, x4)

T , and dx
dt = F (x), with

F = (f1, f2, f3, f4)
T , then model in system (1) re-

written in the form:
dx1
dt = Π− (bβ x5 + β x2)x1 − µx1
dx2
dt = (bβ x5 + β x2)x1 − (ω + τ + µ)x2
dx3
dt = (1− α)ωx2 − (µ+ φ)x3
dx4
dt = αωx2 + φx3 − µx4
dx5
dt = σ x2 − ϑx5

(13)

We consider the disease transmission rate β as a bi-
furcation parameters so that REff = 1 iff

β = β∗ =
µϑ (ω + τ + µ)

Π (bσ + ϑ)

The disease free equilibrium is given by (x1 =
Π
µ , x2 = 0;x3 = 0, x4 = 0, x5 = 0). Then the
linearizion matrix of Equation (13) at a disease free
Equilibrium is given by:

J =


−µ −β Π

µ
0 0 − bβ Π

µ

0 β Π
µ

− (ω + τ + µ) 0 0 bβ Π
µ

0 (1− α)ω −µ− φ 0 0
0 αω φ −µ 0

0 σ 0 0 −ϑ


(14)

Zero is a simple eigenvalue of J if µ = 1. The right
eigenvector, w = (w1, w2, w3, w4)

T , associated with
this simple zero eigenvalue can be obtained from
Jw = 0. The system becomes

−µw1 − β∗Π
µ w2 − bβ∗Π

µ w5 = 0
β∗Π
µ − (ω + τ + µ)w2 +

β∗Π
µ w5 = 0

(1− α)ωw2 − (φ+ µ)w3 = 0
αωw2 + φw3 + µw4 = 0

σw2 − ϑw5 = 0

(15)

From Equation(15) we obtain

w1 = −(ω + τ + µ)

µΠ
)w2, w2 = w2 > 0,

w3 =
(1− α)ω

φ+ µ
w2, w4 =

ω(1− α) + ω(φ+ µ)

µ(φ+ µ)
w2,

w5 =
σ

ϑ
w2

Here we have taken into account the expression for
β∗ . Next we compute the left eigenvector, v =
(v1, v2, v3, v4) , associated with this simple zero eigen-
value can be obtained from vJ = 0 and the system
becomes

−µv1 = 0

−β∗Π
µ

v1 − (β
∗Π
µ

+ (ω + τ + µ))v2 − (1− α)ωv3 + αωv4
+σv5 = 0

−(φ+ µ)v3 + φv4 = 0
−µv4 = 0

− bβ∗Π
µ

v1 + ( bβ
∗Π
µ

+ (ω + τ + µ))v2 − (1− α)ωv3 + αωv4
+ϑv5 = 0

(16)
From Equation (16), we obtain

v1 = v3 = v4 = 0, v5 =
b(ω + τ + µ)

bσ + ϑ
v2,

Here we have taken into account the expression for
β∗. where v2 is calculated to ensure that the eigen-
vectors satisfy the condition v.w = 1. Since the first,
third and fourth component of v are zero, we don’t
need the derivatives of f1, f3 and f4. From the deriva-
tives of f2 and f5 the only ones that are nonzero are
the following:

∂2f2
∂x1∂x5

=
∂2f2
∂x5∂x1

= β∗,

∂2f2
∂x2∂x3

=
∂2f2
∂x3∂x2

= bβ∗

with
∂2f2
∂x2∂β∗

= β∗,
∂2f2
∂x5∂β∗

= bβ∗

and all the other partial derivatives of f2 and f4 are
zero. The direction of the bifurcation at R0 = 1 is de-
termined by the signs of the bifurcation coefficients a
and b, obtained from the above partial derivatives,
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given respectively by

a = −2
β(ω + τ + µ)

µΠ

[
1 +

bσ

ϑ

]
< 0 (17)

and

b = β

[
1 +

bσ

ϑ

]
> 0 (18)

Since the coefficient b is always positive and the sign
of the coefficient a is negative. Therefore, cholera
model to exhibit a forward bifurcation and there exist
at least one stable endemic equilibrium when REff >
1. Using expression for I∗ in the endemic equilib-
rium, we plotted a forward bifurcation diagram in
Figure 2.

Figure 2: Forward bifurcation drawn by utilizing I the parameter values
listed in Table 2

3.6 Sensitivity Analysis

In this section we have done sensitivity analysis to
identify parameters that have an impact in the trans-
mission of cholera. We used the normalized sen-
sitivity index definition as defined in (Blower and
Dowlatabadi, 1994) as it is done by (Alemneh et al.,
2023). The Normalized forward sensitivity index of a
variable, REff , that depends differentiable on a pa-
rameter, p, is defined as:

Λ
REff
p =

∂REff

∂p
× p

REff

for p represents all the basic parameters. Here we
have REff = βΠ(bσ+ϑ)

µϑ (ω+τ+µ) . For the sensitivity index

of REff to the parameters:

Λ
REff

β =
∂REff

∂β
× β

REff
= 1 > 0

Λ
REff

b =
∂REff

∂b
× b

REff
=

bσ

bσ + ϑ
> 0

Λ
REff
µ =

∂REff

∂α
× µ

REff
= − µ

ω + τ + µ
< 0

Λ
REff
τ =

∂REff

∂τ
× τ

REff
= − τ

ω + τ + µ
> 0

Λ
REff
ω =

∂REff

∂ω
× ω

REff
= − ω

ω + τ + µ
< 0

Λ
REff
σ =

∂REff

∂µ
× µ

REff
=

bσ

bσ + ϑ
< 0

Λ
REff

ϑ =
∂REff

∂ϑ
× ϑ

REff
= − bσ

bσ + ϑ
< 0

Figure 3 shows the reproduction number’s sensitiv-
ity indices in relation to the basic parameters. From
Figure 3 we can conclude that, those parameters that
have positive indices Π, β, and σ show that they
have great impact on expanding cholera disease in
the community if their values are increasing by keep-
ing other parameters constant. However, those pa-
rameters in which their sensitivity indices are neg-
ative τ, ω, ϑ, and µ have an effect of minimizing
the burden of cholera disease in the community as
their values increase. From this result, we advise
the government stakeholders should act on decreas-
ing those positive indices parameters such us work-
ing to reduce the rate of intake of Vibrio Cholerae

Figure 3: The local elasticity indices of REff with respect to parameters
of the model (1).

from infected humans(β) as well as decreasing shad-
ing rate of infected individuals Vibrio Cholerae in
the environment decreases the reproduction number
while increasing those parameters with negative in-
dices such as increasing the rate of recovery ( ω) of
infected individuals from cholera and increasing a
mechanism of clearance rate ( ϑ) of Vibrio Cholerae
decreases the reproduction to control cholera in the
community.
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(a)

(b)

(c)

(d)

(e)

Figure 4: Simulations of the Cholera model for different value of β.

4 Numerical Simulations
We perform some numerical simulations of system

(3) to support our theoretical findings.We employed
Maple software for simulation of the model in equa-
tion (1 ) and done with ODE45. Using the parameter
values from Table 2, and the initial conditions S(0)
= 1000, I(0) = 100,R(0)=0 H(0) = 10, C(0) = 100. We

Tables 2: parameter values for Cholera model in 1

Parameter
symbol

Value Source

Π 3.5 Assumed
β 0.002 (Berhe, 2020)
b 2 Assumed
σ 20 Assumed
ω 0.062 Assumed
α 0.44 (Berhe, 2020)
µ 0.0014 (Alemneh et al., 2023)
ϑ 0.033 (Berhe, 2020)
τ 0.015 (Berhe, 2020)
φ 0.2 (Tilahun et al., 2020)

investigated numerically the effect of the parameters
on the spread of Cholera in a population.

Fig. 4 (a)-(e), showed the effect of varying the
contact rate of susceptible individuals with the Vibro
cholerae pathogen in the environment β and infected
individuals. As the value of β increases from 0.002 to
0.006 the susceptible population Fig. 4 (a) decreases
in number and the other populations like,infected
Fig. 4 (b), hospitalized Fig. 4 (c),recovered Fig. 4
(d) and Vibro cholerae pathogen Fig.4 (e) increases
in their number as time runs. This is therefore,
reducing means of contact with the Vibro cholerae and
infectious individuals brings down the number of
infected individuals in the population.
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We have showed the effect of varying the number
of individuals who leave the infected sub-population
ω in the Fig. 5 (a)-(e). As the value of ω increases from
0.032 to 0.082 , increases the susceptible population
in Fig. 5 (a), hospitalized in Fig. 5 (c) and recovered
in Fig. 5 (d) and decreases the number of infected
population Fig. 5 (b), Vibro cholerae pathogen in Fig.
5 (e). Hence it is advisable to increase the value of ω
to fight against the disease.

In Fig. 6 (a)-(e), We have shown the sensitivity
of shading rate of infectious individuals to cholera
pathogen in the environment σ. As the value of σ
increases from 0.2 to 0.5 the Cholera pathogen in the
environment increases as shown in Fig. 6 (e). This
pathogen increment again increases the number of
infected population Fig. 6 (b), hospitalized Fig. 6 (c),
recovered population Fig. 6 (d) and on the other side
it decreases the number of susceptible population
Fig. 6 (a) as time runs. Therefore, it is important
to reduce the shading rate of infectious individuals
to the environment to reduce the disease from the
community.

5 Discussions and Conclusions

This study considered an SIHR-C deterministic
model to analyze cholera disease. In this research
we analyzed the qualitative behaviour of the basic
model. From this analysis we obtained the effective
reproduction number of the model. Using this
number, we showed the stability of the disease free
and endemic equilibrium point of the model.

We utilized lyapunov function to prove the global
stability of DFE point. From the Bifurcation analysis
our model exhibits forward bifurication which does
not agree with the findings of Sun et al. (2017). This
may be because of the model assumption that we
used mass action incidence. A sensitivity analysis
of the model is done to show the importance of
model parameters. It can be inferred from sensitivity
that positive indices β, σ, π should be decreased
while increasing negative indices ω, τ, ϑ have a great
impact on the transmission dynamics and prevalence
of cholera this was recommended done by Berhe
(2020).

Hence, we conclude that the rate of indirect and
direct contact must be minimized to reduce the
number of infected individuals as it is similar to the
findings of work done by Tilahun et al. (2020).

(a)

(b)

(c)

(d)

(e)

Figure 5: Simulations of the Cholera model for different value of ω.
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(a)

(b)

(c)

(d)

(e)

Figure 6: Simulations of the Cholera model for different value of σ.

Also, we found that working on enhancing the
treatment of infected individuals reduces infections
individual’s this will decrease contribution in the
parasite pathogen concentration in the environment
Tilahun et al. (2020).

Therefore, decision makers and stakeholders can
apply the results that have a significant contribution
in combating this pandemic in very short period of
time.
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