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ABSTRACT 

In this paper, we introduce the concept of δ-ideals in MS-ADL analogous to that of MS-algebras 
and explores their properties. It is proved that the class of all δ-ideals forms a complete distribu-
tive lattice. We provided a set of equivalent conditions for a given ideal of an MS-ADL to be a δ-
ideal. Furthermore, the image and inverse image of δ-ideals also studied under a homomorphism 
mapping.   
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ORIGINAL RESEARCH  

Introduction 

The concept of an almost distributive lattice 
(ADL) was introduced by Swamy and Rao
(1981) as a common abstraction of most of the 
existing ring theoretic and lattice theoretic 
generalizations of a Boolean algebra. An ADL 

is an algebra with two binary operations “V” 

and “Λ” which satisfies most of the properties 
of a distributive lattice with smallest element 
0, except possibly the commutativity of the 

binary operations “V” and ”Λ” , and the right 

distributivity of “V” over “Λ”. It was also 
observed that any one of these three properties 
converts an ADL into a distributive lattice. 
The class of ADLs with pseudo-
complementation was introduced by Swamy 
et al. (2000). Later on, Swamy et al. (2003) 
introduced a more general class of ADLs 
called Stone ADLs, which properly contains 
the class of pseudo-complemented ADLs, as a 

generalization of Stone lattices. Rafi et al. 
(2014), Studied Dominator and Closure ideals 
in Almost Distributive Lattices. Also, Rafi et 
al. (2016) presented δ-ideals in pseudo-
complemented almost distributive Lattices. 

An Ockham algebra is a bounded distributive 
lattice with a dual endomorphism. The class 
of all Ockham algebras contains the well-
known classes for example Boolean algebras, 
De Morgan algebras, Kleene algebras and 
Stone algebras (Blyth and Varlet, 1994). 
Berman (1977), initiated the study of a 
variety K of bounded distributive lattices 
endowed with a dual homomorphic operation 
paying particular attention to certain 
subvarieties K(p,q) for p ≥, q > 0. A subclass 
of Ockham algebras so-called MS-algebras 
was introduced by Blyth and Varlet (1983a) 
as a common abstraction of De Morgan 
algebras and Stone algebras.  
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An Ockham algebra is a bounded distributive
lattice with a dual endomorphism. The class of
all Ockham algebras contains the well-known
classes for example Boolean algebras, De
Morgan algebras, Kleene algebras and Stone
algebras Blyth and Varlet (1983a). In 1977,
Berman (1974), initiated the study of a variety
K of bounded distributive lattices endowed
with a dual homomorphic operation paying
particular attention to certain subvarieties
K(p,q) for p ≥, q > 0. A subclass of Ockham
algebras so-called MS-algebras was introduced
by Blyth and Varlet (1983b) as a common
abstraction of De Morgan algebras and Stone
algebras.

This class of Ockham algebras is characterized
by the fact that the dual endomorphism
f satisfies f0 ≤ f2, which implies that
f0 = f2. The class of all MS-algebras
forms an equational class. Blyth and Varlet
characterized the subvarieties of MS-algebras
in Blyth et al. (1997). More recently, Addis
(2020a), investigated a new equational class of
algebras called De Morgan almost distributive
lattices (De Morgan ADLs) as a common
abstraction of De Morgan algebras and almost
Boolean algebras (relatively complemented
ADLs). He also studied another equational
class of algebras called MS-almost distributive
lattices (MS-ADLs) as a common abstraction
of De Morgan ADLs and Stone ADLs Addis
(2020b). In this paper we studied the concept
of δ-ideals in MS-ADL analogous to that of
MS-algebras and explores their properties. The
class of all δ-ideals of MS-ADL as well as we
have shown that this class forms a complete
distributive lattice. Furthermore, we studied
the principal δ-ideals and their properties. We
provided a set of equivalent conditions for a
given ideal of an MS-ADL to be a δ-ideal.
Moreover, the image and inverse image of
δ-ideals also studied under a homomorphism
mapping.

2Preliminaries

In this section ,we recall some definitions and
results which will be used in this paper.

Definition 2.1. Swamy and Rao (1981) An
algebra L = (L,∨,∧, 0) of type (2, 2, 0) is called
an Almost Distributive Lattice (abbreviated as
ADL), if it satisfies the following conditions for
all a, b and c ∈ L:

(1) 0 ∧ a = 0,

(2) a ∨ 0 = a,

(3) a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c),

(4) a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c),

(5) (a ∨ b) ∧ c = (a ∧ c) ∨ (b ∧ c),

(6) (a ∨ b) ∧ b = b.

For any a, b ∈ L, we say that a is less than
or equals to b and we write a ≤ b if a ∧ b = a,
equivalently a∨b = b. An elementm inL is said
to be maximal if it is maximal with respect to
the partial ordering ≤ on L.

Lemma 2.2. Swamy et al. (2000) Let L be
an ADL and m ∈ L. Then the following are
equivalent:

(1) m is maximal with respect to ≤,

(2) m ∨ a = m, for all a ∈ L,

(3) m ∧ a = a, for all a ∈ L,

(4) a ∨m is maximal, for all a ∈ L.

Definition 2.3. Swamy and Rao (1981) A
nonempty subset I of L is called an ideal
(respectively a filter) of L, if a ∨ b, a ∧ x ∈
I(respectively a∧b, x∨a ∈ F ) or all a, b ∈ I(F )
and all x ∈ L.

Definition 2.4. Blyth and Varlet (1983a) An
MS-algebra is an algebra (L,∨,∧,◦ , 0, 1) of
type (2, 2, 1, 0, 0), such that (L,∨,∧, 0, 1) is a
bounded distributive lattice and a → a◦ is a
unary operation satisfies: a ≤ a◦◦, (a ∧ b)◦ =
a◦ ∨ b◦, 1◦ = 0

Definition 2.5. Addis (2020b) An MS-almost
distributive lattice (MS-ADL) is an algebra
(L,∨,∧,◦ , 0) of type (2, 2, 1, 0) such that
(L,∨,∧, 0) is an ADL with maximal elements
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and x 7→ x◦ is a unary operation on L satisfying
the following axioms:

(1) x◦◦ ∧ x = x,

(2) (x ∨ y)◦ = x◦ ∧ y◦,

(3) (x ∧ y)◦ = x◦ ∨ y◦,

(4) m◦ = 0 for all maximal elements m of
L,for all x, y ∈ L. In addition, if it
satisfies the following condition:

(5) x◦◦ = x ∧ m, then L is called a De
Morgan ADL.

Lemma 2.6. Addis (2020b) The following
holds in an MS-ADL.

(1) 0◦ is maximal,

(2) a ≤ b ⇒ b◦ ≤ a◦,

(3) a◦◦◦ = a◦,

(4) (a ∧ b)◦◦ = a◦◦ ∨ b◦◦,

(5) (a ∨ b)◦◦ = a◦◦ ∧ b◦◦,

(6) (a ∧m)◦ = a◦,

(7) (a ∧ b)◦ = (b ∧ a)◦ for all a, b ∈ L.

3 δ-ideals of MS-ADL

The concept of δ-ideals of MS-algebras was
given by Badawy et al. (2024). In this
section, we introduce the concept of δ-ideals
of MS-ADL, analogously. Though many
results look similar, the proofs are not similar
because of the lack of the properties like:
commutativity of ”∨”, commutativity of ”∧”
and the right distributivity of ”∨” over ”∧” in
an ADL.

Throughout this section L stands for an
MS-almost distributive lattice unless otherwise
mentioned.

Definition 3.1. For any filter F of L, define

δ(F ) = {x ∈ L : x◦ ∈ F}
.

Now we have the following results.

Lemma 3.2. For any filter F of L, δ(F ) is an
ideal of L.

Proof. Since 0◦ ∈ F , 0 ∈ δ(F ). Then δ(F ) ̸= ∅.
Let x, y ∈ δ(F ). Then x◦, y◦ ∈ F . This
implies x◦ ∧ y◦ = (x ∨ y)◦ ∈ F . This implies
x ∨ y ∈ δ(F ). Let x ∈ δ(F ) and r ∈ L. Then
x◦ ∈ δ(F ). This implies (x ∧ r)◦ = (r ∧ x)◦ =
r◦ ∨ x◦ ∈ F . Hence x ∧ r ∈ δ(F ). Therefore
δ(F ) is an ideal of L. □

Lemma 3.3. For any two filters of F and G
of L, we have the following:

(1) F ∩ δ(F ) = ∅, whenever L is a stone
ADL and F is a proper filter,

(2) x ∈ δ(F ) implies x◦◦ ∈ δ(F ),

(3) x ∈ F implies x◦ ∈ δ(F ),

(4) F = L if and only if δ(F ) = L,

(5) F ⊆ G implies δ(F ) ⊆ δ(G),

(6) δ(D) = {0},

(7) δ(F ) is a prime, whenever F is a prime
filter of L,

(8) δ(F ∩G) = δ(F ) ∩ δ(G).

Proof. (1) Suppose F ∩ δ(F ) ̸= ∅. Then there
is x in F ∩ δ(F ). Which implies x ∈ F and
x◦ ∈ F . Since F is a filter and L is a stone
ADL, we have x ∧ x◦ = 0 ∈ F . Which is a
contradiction. Thus F ∩ δ(F ) = ∅.

(2) Let x ∈ δ(F ), then x◦◦◦ = x◦ ∈ F . This
implies x◦◦ ∈ δ(F ).

(3) Let x ∈ F , then x = x◦◦ ∧ x ∈ F . This
implies x◦◦ ∈ F . Hence x◦ ∈ δ(F ).

(4) Suppose that F = L. Then we can choose
0 = 0◦◦ ∈ F . This implies m = 0◦ ∈ δ(F ).
This implies δ(F ) = L. Conversely, suppose
that δ(F ) = L. This implies m ∈ δ(F ) for
any maximal element of m of L. This implies
m◦ = 0 ∈ F . Hence F = L.

(5) Suppose that F ⊆ G. Let x ∈ δ(F ). Then
x◦ ∈ F ⊆ G. This implies x ∈ δ(G). Hence
δ(F ) ⊆ δ(G).
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(6) Let x ∈ δ(D). Then x◦ ∈ D. This implies
x◦◦ = 0. This implies x = x◦◦ ∧ x = 0 ∧ x = 0.
Hence δ(D) = {0}.

(7) Suppose F is prime filter of L. Let x ∧ y ∈
δ(F ). Then (x∧y)◦ = x◦∨y◦ ∈ F . This implies
x◦ ∈ F or y◦ ∈ F . This implies x ∈ δ(F ) or
y ∈ δ(F ). Hence δ(F ) is prime ideal of L. □

The concept of δ-ideal is introduced in the
following.

Definition 3.4. An ideal I of L is called a
δ-Ideal if I = δ(F ) for some filter F of L.

Example 3.5. Consider a discrete MS-ADL
A = {0′

, a
′} and an MS-algebra

B = {0.a.b, c, d, e, 1} whose Hasse diagram is
given in the following Figure-1.

Take L = A×B = {(0′
, 0), (0

′
, a), (0

′
, b), (0

′
, c),

(0
′
, d), (0

′
, e), (0

′
, 1), (a

′
, 0), (a

′
, a), (a

′
, b), (a

′
, c),

(a
′
, d), (a

′
, e),

(a
′
, 1)}. Then (L,∨,∧,◦ , 0) is an

MS-ADL with zero 0 = (0
′
, 0) under

point-wise operations. Consider I =
{(0′

, 0), (0
′
, a), (0

′
, b), (0

′
, c), (0

′
, d), (a

′
, 0),

(a
′
, a), (a

′
, b),

(a
′
, c), (a

′
, d)} and F = {(0′

, e), (0
′
, 1), (a

′
, e),

(a
′
, 1)}. Clearly,I is an ideals of L andF is a

filter of L. Now δ(F ) = {x ∈ L : x◦ ∈ F} =

{(0′
, 0), (0

′
, a), (0

′
, b), (0

′
, c),

(0
′
, d), (a

′
, 0), (a

′
, a), (a

′
, b), (a

′
, c), (a

′
, d)} = I.

Therefore I is δ-ideal of L.

Lemma 3.6. A proper δ-ideal of L contains
no dense element.

Proof. Let I be a proper δ-ideal L. Then by
Lemma 3.3(4), there is a proper filter F of L
such that I = δ(F ). Now we need to show there
is no dense element in I. Suppose not. Then
there is a dense element x ∈ δ(F ). This implies
0 = x◦ ∈ F . This shows that F = L. Which is
a contradiction. Hence the result. □

Now, let us denote the set of all δ-Ideals of L
by Iδ(L) . Then, in the following Theorem, we
prove that Iδ(L) forms a complete distributive
lattice.

Theorem 3.7. The set Iδ(L) forms a complete
distributive lattice.

Proof. For any two filters F,G of L, define two
binary operations ∩ and ⊔ as:

δ(F ) ∩ δ(G) = δ(F ∩G) and
δ(F ) ⊔ δ(G) = δ(F ∨G).

Now we prove δ(F ) ⊔ δ(G) is the supremum
of δ(F ), δ(G) ∈ Iδ(L). Since F ⊆ F ∨ G
and G ⊆ F ∨ G, by Lemma 3.3(5), we have
δ(F ), δ(G) ⊆ δ(F ∨ G). This implies that
δ(F∨G) is an upper bound of δ(F ), δ(G). Let J
be any δ-ideal containing δ(F ) and δ(G). Then
there exists a filter H of L such that J = δ(H)
and δ(F ) ⊆ δ(H) and δ(G) ⊆ δ(H). Now we
prove that δ(F ∨G) ⊆ δ(H). Let x ∈ δ(F ∨G).
Then x◦ ∈ F∨G and hence x◦ = f∧g, for some
f ∈ F and g ∈ G. Thus by Lemma 3.3(3), we
have f◦ ∈ δ(F ) ⊆ δ(H) and g◦ ∈ δ(G) ⊆ δ(H).

⇒ f◦ ∨ g◦ ∈ δ(H)

⇒ x◦◦ = (f ∧ g)◦ ∈ δ(H)

⇒ x◦ ∈ H

⇒ x ∈ δ(H)

Thus δ(F ∨ G) ⊆ δ(H). So δ(F ∨ G) is the
supremum of δ(F ) and δ(G) in Iδ(L). Hence
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(Iδ(L),∩,⊔) is a lattice.
We now prove the distributivity.

Let δ(F ), δ(G), δ(H). Then

δ(F ) ⊔ (δ(G) ∪ δ(H)) = δ((F ∨G) ∩ (F ∨H))

= δ(F ∨G) ∩ δ(F ∨H)

= (F ⊔G) ∩ (F ⊔H)

Thus Iδ(L) is a distributive lattice.
Next, we prove the completeness. Since {0}
and L are the least and greatest elements of
Iδ(L). Let {δ(Fi) : i ∈ I} be a subfamily of
Iδ(L). Then

⋂
i∈I δ(Fi) is an ideal of L.

x ∈
⋂
i∈I

δ(Fi) ⇔ x◦ ∈ Fi

⇔ x◦ ∈
⋂
i∈I

Fi

⇔ x ∈ δ(
⋂
i∈I

Fi)

Thus
⋂

i∈I δ(Fi) ∈ Iδ(L). So (Iδ(L),⊔,∩) is a
complete distributive lattice. □

Definition 3.8. A δ-ideal I of L is called
principal δ-ideal if there exists x ∈ L such that
I = δ([x)).

Theorem 3.9. For any x ∈ L, (x◦] is a δ-ideal
of L.

Proof. Let a ∈ (x◦]. Then a = x◦ ∧ a. This
implies a◦ = x◦◦ ∨ a◦. This implies a◦ ∧ x =
(x◦◦∨a◦)∧x = (x◦◦∧x)∨(a◦∧x) = x∨(a◦∧x) =
x. Thus a◦ ∈ [x). So a ∈ δ([x)). Hence
(x◦] ⊆ δ([x)).

Conversely, let a ∈ δ([x)). Then a◦ ∈ [x) and
so a◦ ∨ x = a◦.

⇒ a◦◦ ∧ x◦ = a◦◦

⇒ a◦◦ ∧ x◦ ∧ a = a◦◦ ∧ a

⇒ x◦ ∧ a◦◦ ∧ a = a◦◦ ∧ a

⇒ x◦ ∧ a = a

⇒ a ∈ (x◦]

Hence δ([x)) ⊆ (x◦]. Therefore δ([x)) =
(x◦]. □

Some properties of principal δ-ideals are given
in the following:

Theorem 3.10. (1) For all a ∈ L, δ([a)) =
(a◦],

(2) For all a ∈ L, δ([a)) = δ([a◦◦)),

(3) For all d ∈ D, δ([d)) = {0},

(4) For all x ∈ F , δ([x)) ⊆ δ([F ) for any filter
F of L.

Proof. (1) It is clear.

(2) Since a◦ = a◦◦◦ and by (1), δ([a)) = (a◦] =
(a◦◦◦] = δ([a◦◦)).

(3) For every d ∈ D, we have δ([d)) = (d◦] =
(0] = {0}

(4) Let x ∈ F . Suppose that y ∈ δ([x)). Then
y◦ ∈ [x).

⇒ y◦ = y◦ ∨ x ∈ F

⇒ y ∈ δ(F )

Hence for all x ∈ F , δ([x)) ⊆ δ([F ) for any
filter F of L. □

Let us denote that the set of all principal
δ-ideals of an MS-ADL L by M◦(L) = {δ([x)) :
x ∈ L} = {(x◦] : x ∈ L}. Then, in the
following Theorem, it is observed that M◦(L)
is a de Morgan algebra.

Theorem 3.11. M◦(L) is a sublattice of the
lattice Iδ(L) of all δ-Ideal of L and M◦(L) can
be made in to a de Morgan algebra. Moreover,
the mapping x → (x◦] is a dual homomorphism
of L into M◦(L).

Proof. Let δ([x)), δ([y)) ∈ M◦(L) for some
x, y ∈ L. Then we get δ([x)) ∩ δ([y)) = δ([x ∨
y)) ∈ M◦(L) and δ([x)) ∨ δ([y)) = δ([x ∨ y)) ∈
M◦(L). Also, {0} = δ([m)) ∈ M◦(L) and L =
δ([0)) ∈ M◦(L). Hence M◦(L) is a bounded
sublattice of Iδ(L) and hence a distributive
lattice. Now, define a unary operation on ”−”
M◦(L) by δ([x)) = δ([x◦)). We can easily
verify that the unary operation ”−” satisfies
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the de Morgan law. This indicates that M◦(L)
is de Morgan algebra. Also easily show that the
mapping x → (x◦] is a dual homomorphism of
L into M◦(L). □

Theorem 3.12. For any ideal I of L, the
following conditions are equivalent:

(1) I is a δ-Ideal,

(2) I = ∪a∈Iδ([a
◦)),

(3) for any x, y in L, δ([x◦)) = δ([y◦)) and
x ∈ I imply y ∈ I.

Proof. (1) ⇒ (2): Let I be a δ-ideal. Then
I = δ(F ) for some filter F of L. Let x ∈ I.
Then x ∈ δ(F ).

⇒ x◦◦◦ = x◦ ∈ F

⇒ x◦◦ ∈ δ([x◦))

⇒ x ∈ δ([x◦)) ⊆ ∪a∈Iδ([a
◦))

This implies I ⊆ ∪a∈Iδ([a
◦)). Clearly

∪a∈Iδ([a
◦)) ⊆ I. Hence I = ∪a∈Iδ([a

◦)).

(2) ⇒ (3): Suppose condition (2) holds. Let
for any x, y in L, δ([x◦)) = δ([y◦)) and x ∈ I.
Then δ([x◦)) = δ([y◦)) ⊆ I.

⇒ y◦◦ ∈ I

⇒ y = y◦◦ ∧ y ∈ I

(3) ⇒ (1): Assume the condition (3). Let I be
an ideal of L.
Consider a set

H = {x ∈ L : x◦ ∈ I}.

Let x, y ∈ H. Then x◦, y◦ ∈ I and (x∧y)◦ ∈ I.
Thus x ∧ y ∈ H. Again, let x ∈ H and z ∈ L.
Then x◦ ∈ I and x◦ ∧ z◦ ∈ I. This implies
z ∨ x ∈ H. Thus H is a filter of L.
Now (z ∨ x)◦ = (x ∨ z)◦ = x◦ ∧ z◦ ∈ I. This
implies z ∨ x ∈ H and H is a filter of L. Now
we prove that I = δ(H). Let x ∈ I. Then we
get x ∈ I and δ([x◦)) = δ([x◦◦◦)). By condition
(3), x◦◦ ∈ I.

⇒ x◦ ∈ H

⇒ x ∈ δ(H)

This implies I ⊆ δ(H).

Conversely, let x ∈ δ(H). Then x◦ ∈ H.

⇒ x◦◦ ∈ I

⇒ x = x◦◦ ∧ x ∈ I

Thus δ(H) ⊆ I. So δ(H) = I. □

4 δ-Ideals and Homomorphisms of

MS-Almost Distributive lattice

In this section, some properties of the
homomorphic images and the inverse images
of δ-Ideals of MS-ADL are studied. By a
homomorphism on an MS-ADL L, we mean a
lattice homomorphism h satisfying (f(x))◦ =
f(x◦) for all x ∈ L.

Theorem 4.1. Letf : L → M be a
homomorphism of an MS-ADL L onto an
MS-ADL M . Then we have:

(1) For any δ-Ideal I of L, f(I) is a δ-Ideal of
M ,

(2) For any a ∈ L, f(δ([a))) = δ(f([a)),

(3) For any δ-Ideal I of L, f(I) =
∪i∈Iδ([((f(i))

◦))),

(4) For any filter F of L, f(δ(F )) = δ(f(F )).

Proof. Let I be a δ-ideal of L. Then I = δ(F )
for some filter F of L. Now,it is enough to show
that f(I) = δ(f(F )) for some filters of F .

y ∈ f(I) =f(δ(F ))

⇒y = f(x) for some x ∈ δ(F )

⇒x◦ ∈ F

⇒y◦ = f(x)◦ ∈ f(F )

⇒y ∈ δ(f(F ))

This implies f(I) ⊆ δ(f(F )).

Conversely, let y ∈ δ(f(F )). Then y◦ = f(x)
for some x ∈ F . This implies that x◦◦ ∈ F
and x◦ ∈ δ(F ). Thus y◦◦ = f(x◦) ∈ f(δ(F )).
Since f(δ(F )) is an ideal of M and y ∈ M ,
we get that y = y◦◦ ∧ y ∈ f(δ(F )). Thus
δ(f(F )) ⊆ f(I). So f(I) = δ(f(F )). □
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Theorem 4.2. Let f : L → M be a
homomorphism of an MS-ADL L into an
MS-ADL M . Then we have:

(1) For any δ-ideal I of M , f−1(I) is a δ-ideal
of L,

(2) Kerf is a δ-ideal of L.

Proof. (1) Since I is a δ-ideal of M , then
I = δ(F ) for some filter F of M . We prove
that f−1(I) = δ(f−1(F )), where f−1(I) is an
ideal of L. Now,

x ∈ f−1(I) ⇒ f(x) ∈ I = δ(F )

⇒ (f(x))◦ = f(x◦) ∈ F

⇒ x◦ ∈ f−1(F )

⇒ x ∈ δ(f−1(F ))

This implies f−1(I) ⊆ δ(f−1(F ).

Conversely,

x ∈ δ(f−1(F )) ⇒ x◦ ∈ f−1(F )

⇒ (f(x))◦ ∈ F

⇒ f(x) ∈ δ(F ) = I

⇒ x ∈ f−1(I)

⇒ δ(f−1(F )) ⊆ f−1(I)

Hence f−1(I) is a δ-ideal of L.

(2) Since f is a homomorphism, then Kerf =
{x ∈ L : f(x) = 0} is an ideal of L and
Cokerf = {x ∈ L : f(x) = m} is filter of L, for
a maximal element of m. Easily we prove that
Kerf = δ(Cokerf) and so Kerf is δ-ideal of
L. □

Lemma 4.3. Let f : L → M be an onto
homomorphism between MS-ADLs L and M .
Then we have:

(1) M◦(L) is homomorphic of M◦(M),

(2) Iδ(L) is homomorphic of Iδ(M).
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