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Abstract  

In this paper, we introduce the notion of fractions in Abstract R-vector space, its norm, and 
obtaining certain properties. Also, we show that fraction of Abstract R-vector spaces is once 
again a vector space over fractions of the commutative regular ring with unity. Further, we 
introduce the notion of sub-vector spaces in a fraction of Abstract, R-vector spaces.  

Keywords: Abstract R-vector spaces, Fractions in Abstract R-Vector Spaces, norm, sub-S-1 R-
vector space.  

ORIGINAL RESEARCH  

Introduction  

An Abstract R-Vector space is quite different 
from an ordinary R-module as it is a 
generalization of the Boolean vector space of 
Stroup’s (1969) work. The concept of 
Abstract R-vector spaces has been studied by 
many authors in different ways. Rao (1966a; 
1966b) has intensively studied it. Imitating 
the line of thought of Rao (1966a; 1966b) we 
introduce the notions of Fractions of Abstract 
R-vector spaces, its norm, its sub-vector 
spaces, and study their properties. This paper 
consists of four sections. In section one, we 
recall certain definitions and results 
concerning Abstract R-vector spaces. In 
section two, we introduce the notion of 
fractions of Abstract R-vector spaces and 
show that fractions of Abstract R-vector 
spaces are a vector space over fractions of the 
commutative regular ring. In section three, 
we establish the norm of a fraction of 
Abstract R-vector spaces and study its 
properties. Finally, in section four, we 

introduce the sub-vector space of a vector 
space over a fraction of commutative regular 
rings and establish that S-1V/S-1U is 
isomorphic to S-1 (V/U) where U is a sub-
Abstract R-vector space of an Abstract R-
vector space V and S is a multiplicatively 
closed subset of a commutative regular ring 
R  

1 Preliminaries 

 Here we collect certain definitions and 
results concerning fractions of commutative 
regular rings and Abstract R-vector spaces 
(vector space over regular rings) (Rao, 1966). 
Throughout this paper R stands for 
commutative regular rings with 1, B denotes 
the set of all idempotents of R, S stands for a 
non zero multiplicatively closed set. For 
further reference, the readers are advised to 
refer Rao (1966a) and Rao (1966b). Here 
after throughout the discussion of this paper 
"R-vector space" means "Abstract R-vector 
space".  
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Definition 1.1. A non empty subset S of a
commutative regular ring R with 1 is said
to be multiplicatively closed if 1 ∈ S and
ab ∈ S for all a, b ∈ S.

Theorem 1.2. Let S be a multiplicatively
closed subset of R. Define a relation ∼ on
R × S by (r1, s1) ∼ (r2, s2) ⇔ u(s2r1) =
u(s1r2) for some u ∈ S, ∀r1, r2 ∈ R and
s1, s2 ∈ S. Then ∼ is an equivalence rela-
tion.

Remark 1.3. The equivalence class con-
taining (r, s) ∈ R× S is denoted by r

s . The
set of all equivalence classes in R × S is
denoted by S−1R = { r

s : r ∈ R, s ∈ S}.

Lemma 1.4. Let S be a multiplicatively
closed subset of R.Then:
1. For r, p ∈ R and s, t ∈ S,
r
s = p

t ⇔ u(tr) = u(sp) for some
u ∈ S.
2. r

t =
rt
st =

tr
st =

tr
ts ,∀r ∈ R and t, s ∈ S

3. rs1
s1

= rs2
s2

, ∀r ∈ R and s1, s2 ∈ S
4. s1

s1
= s2

s2
, ∀s1, s2 ∈ S

5. {0
s} = {0} ∈ S−1R for 0 ∈ R

6. s
s = 1

1 = 1 ∈ S−1R for 1 ∈ R

Theorem 1.5. Let S be a multiplicatively
closed subset of a commutative regular ring
R. Define the binary operations + and · on
S−1R as r1

s1
+ r2

s2
= s2r1+s1r2

s1s2
and r1

s1
· r2
s2

=
r1r2
s1s2

∀r1, r2 ∈ R and s1, s2 ∈ S. Then S−1R
is a commutative regular ring.

Remark 1.6. The usual partial ordering,
<, on B is defined as a < b ⇔ ab = a.

Lemma 1.7. Let R be a regular ring. For
each a ∈ R,
(i). |a|a = a = a|a| (ii).|a| = a ⇔ a ∈ B.

Definition 1.8. Let V = (V,+) be an
abelian group and R = (R,+, .) be a com-
mutative regular ring with unity element 1.
Then V is said to be a Vector space over

R (or simply R-vector space) if and only if
there exists a mapping :R×V → V (the im-
age of any (a, x) ∈ R×V will be denoted by
ax) such that for all x, y ∈ V and a, b ∈ R,
all the following properties hold:

1. a2(x+ y) = ax+ ay

2. a(bx) = (ab)x if a2 = a

3. 1x = x

4. (a+ b)x = ax+ bx if ab = 0

5. r(sx) = (rs)x if r and s are invertible
elements of R

Definition 1.9. An R-vector space V is
said to be normed if and only if there exists
a mapping ||:V → B satisfying the follow-
ing properties.
(1). |x| = 0 ⇔ x = 0 and (2). |ax| = a|x|
for all x ∈ V, a ∈ B

Corollary 1.10. If V is normed R-vector
space, then |x|x = x for each x ∈ V .

Lemma 1.11. If V is a normed R-vector
space, then |x+ y| < |x|+ |y|− |x||y| for all
x, y ∈ V .

Definition 1.12. Let W and U be R-vector
spaces. Then the mapping
T : W → U is a linear homomorphism if
T (ax+ by) = aTx+ bTy for all a, b ∈ Rand
ab = 0.

The set of linear homomorphism is de-
noted by Hom(W,U).

Definition 1.13. Let W and U be R-vector
spaces. Then the mapping
T : W → U is a strongly linear homomor-
phism if T (ax + by) = aTx + bTy for all
a, b ∈ R.
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2 Construction of Fractions
in R-Vector Spaces

In this section we construct fractions in R-
vector spaces and study certain properties.

Theorem 2.1. Let V be an R-Vector
Space,S = B be the set of all idempotents
of R. Now define a relation ∼ on V × S
as (x, s) ∼ (y, t) ⇔ u(tx) = u(sy) for some
u ∈ S. Then ∼ is an equivalence relation.

Proof. (i). For any u ∈ S, u(sx) =
u(sx).⇒ (x, s) ∼ (x, s).(ii). Let (x1, s1) ∼
(x2, s2).⇒ u(s2x1) = u(s1x2) for some
u ∈ S.⇒ u(s1x2) = u(s2x1) ⇔ (x2, s2) ∼
(x1, s1).(iii). Let (x1, s1) ∼ (x2, s2) and
(x2, s2) ∼ (x3, s3).⇒ u(s2x1) = u(s1x2)
and v(s3x2) = v(s2x3) for some u, v ∈
S. Now, for uvs2 ∈ S, (uvs2)(s3x1) =
(uvs2s3)x1 = (vs3us2)x1 = vs3(us2x1) =
vs3(us1x2) = us1(vs3x2) = us1(vs2x3) =
(uvs2)(s1x3).⇒ (x1, s1) ∼ (x3, s3). Hence
∼ is an equivalence relation.

Remark 2.2. The equivalence class con-
taining (x, s) ∈ V ×S is denoted by x

s . The
set of all equivalence classes in V × S is
denoted by S−1V = {x

s : x ∈ V, s ∈ S}.
Lemma 2.3. Let V be an R-Vector
Space,S = B be the set of all idempotents
of R.Then
(i). x1

s1
= s2x1

s2s1
= s2x1

s1s2
for s1, s2 ∈ S and

x1 ∈ V .
(ii). s1x1

s1
= s2x1

s2
= x1 for s1, s2 ∈ S and

x1 ∈ V .
(iii). 0

s = 0
t = 0 for any t, s ∈ S.

(iv). x
s = 0

t ⇔ ux = 0 for some u ∈ S,s, t ∈
S and x ∈ V .

Theorem 2.4. Let V be an R-vector space
and S = B be the set of all idempotents of
R. Define the binary operations addition
and scalar multiplication on S−1V as fol-
lows: x

s +
y
t = tx+sy

st and r
s ⊙

x
t = |r|x

st , x, y ∈
V, s, tϵS, r ∈ R.Then S−1V is an S−1R-
vector space.

Proof. Since 0
s = 0 ∈ S−1V ,S−1V ̸= ∅.

To show ” + ” is well defined, let
x1
s1
, x2
s2
, x3
s3
, x4
s4

∈ S−1V such that
x1
s1

= x2
s2
, x3
s3

= x4
s4

⇔ ∃u, v ∈ S such that
u(s2x1) = u(s1x2) and v(s4x3) = v(s3x4).
Now
(uv)[(s2s4)(s3x1 + s1x3)] =
(vs4s3)u(s2x1) + u(s2s1)(vs4x3) =
(vs4s3)u(s1x2) + u(s2s1)(vs3x4) =
(uv)[(s1s3)(s4x2 + s2x4)].Thus ” + ”
is well defined.
Now,let r1

s1
, r2s2 ∈ S−1R and

x
t1
, y
t2

∈ S−1V .For some uv ∈ S
we have (uv)[(s2t2)(|r1|x)] =
(u(s2|r1|))(v(t2x)) = (u(s1|r2|))(v(t1y)) =
(uv)[(s1t1)(|r2|y)].Thus ” ⊙ ” is also well
defined.
It is routine to verify that (S−1V,+) is an
abelian group and with scalar multiplica-
tion ⊙ it is routine to verify the axiom 1
through 5 of definition 1.7.

3 Normed S−1R-vector
spaces

Here we introduce norm on fractions in R-
vector spaces(S−1R-vector spaces) and ob-
tain certain properties. We denote the set
of all idempotents of S−1R by BS−1R.

Definition 3.1. Let V be a normed
Vector space over R and S = BS−1R be
a multiplicatively closed subset of R. A
vector space S−1V over S−1R is said to
be normed provided there exists a mapping
∥.∥ : S−1V → BS−1R defined by ∥x

s∥ = |x|
|s| ,

satisfying:
(1). ∥x

s∥ = 0
s = 0 ⇔ x

s = 0
s = 0

(2). ∥ r
t
x
s∥ = r

t ∥
x
s∥, for all r

t ∈ BS−1R and
x
s ∈ S−1V .

Corollary 3.2. If S−1V is a normed
S−1R-vector space, then ∥x

s∥
x
s = x

s for each
x
s ∈ S−1V .
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Fractions in Abstract R-vector spaces 314

Proof. Using corollary 1.10,∥x
s∥

x
s = |x|

|s|
x
s =

|x|x
ss = x

s .

Lemma 3.3. If S−1V is a normed vector
space over S−1R, then ∥x

s + y
t ∥ < ∥x

s∥ +
∥y
t ∥ − ∥x

s∥∥
y
t ∥ for all x

s ,
y
t ∈ S−1V .

Proof. By definition 1.9 and lemma
1.11,∥x

s + y
t ∥ = ∥ tx+sy

st ∥ = |tx+sy|
|st| <

|tx|+|sy|−|tx||sy|
st = t|x|

st + s|y|
st − t|x|s|y|

stst

= |x|
s + |y|

t −
|x|
s

|y|
t = ∥x

s∥+∥y
t ∥−∥x

s∥∥
y
t ∥.

Definition 3.4. If S−1V is a normed vec-
tor space over S−1R, then
(i). [S−1V ] = {∥x

s∥ : x
s ∈ S−1V }

(ii). S−1V r
s
= {x

t : ∥x
t ∥ < |r|

s } for each
x
t ∈ S−1V and r

s ∈ S−1R.

Lemma 3.5. If S−1V is a normed vector
space over S−1R , then ∥−x

s ∥ = ∥x
s∥ for

each x
s ϵS

−1V .

Proof. it is trivial

Lemma 3.6. If S−1V is a normed vector
space over S−1R and ∥x

s∥∥
y
t ∥ = 0

s = 0, then
(i). ∥x

s∥
y
t = 0

s = 0
(ii). ∥x

s + y
t ∥ = ∥x

s∥+ ∥y
t ∥

(iii). [S−1V ] = {∥x
s∥ : x

s ∈ S−1V } is an
ideal of BS−1R for all x

s ,
y
t ∈ S−1V .

Proof. (i). Since ∥∥x
s∥

y
t ∥ = ∥x

s∥∥
y
t ∥ =

0
s , ∥

x
s∥

y
t = 0

s .
(ii) By remark 1.6 and corollary 3.2,(∥x

s∥+
∥y
t ∥)∥

x
s +

y
t ∥ = ∥x

s∥∥
x
s +

y
t ∥+∥y

t ∥∥
x
s +

y
t ∥ =

∥∥x
s∥

x
s + ∥x

s∥
y
t ∥+ ∥∥y

t ∥
x
s + ∥y

t ∥
y
t ∥ = ∥x

s∥+
∥y
t ∥. On the other hand, by lemma 3.3,

∥x
s + y

t ∥ < ∥x
s∥+ ∥y

t ∥.
(iii) Let a, b ∈ [S−1V ] such that ∥x

s∥ = a
and ∥y

t ∥ = b.∥(1 − b)xs∥∥(1 − a)yt ∥ = (1 −
b)∥x

s∥ + (1 − a)∥y
t ∥ = (1 − b)a(1 − a)b =

0,⇒ ∥(1 − b)xs + (1 − a)yt ∥ = ∥(1 − b)xs∥ +
∥(1 − a)yt ∥ = (1 − b)∥x

s∥ + (1 − a)∥y
t ∥ =

(1 − b)a + (1 − a)b = a − ab + b − ab =
a − b ∈ [S−1V ]. Let a ∈ [S−1V ] such
that a = ∥x

t ∥,
x
t ∈ S−1V and r

u ∈ BS−1R.

Now r
ua = r

u∥
x
s∥ = ∥ r

u ⊙ x
s∥ = ∥ |r|x

us ∥ ∈
[S−1V ].

Theorem 3.7. If S−1V is a normed vec-
tor space over S−1R and r

s ∈ S−1R, then
S−1V r

s
is a sub vector space of S−1V over

S−1R.

Proof. Since 0
s ∈ (S−1V ) r

s
, (S−1V ) r

s
is non

empty. Let x
s ,

y
t ∈ (S−1V ) r

s
and q

u ∈ S−1R.
By lemma 3.3,3.6 and definition 3.4,∥x

s −
y
t ∥ < ∥x

s∥+∥− y
t ∥−∥x

s∥∥
y
t ∥ = ∥x

s∥+∥y
t ∥−

∥x
s∥∥

y
t ∥ < | rs | + | rs | − | rs ||

r
s | = | rs |. Again,

∥ q
u ⊙ x

s∥ = | qu |∥
x
s∥ < |q|

u
|r|
s < |r|

s . Thus
x
s − y

t ,
q
u ⊙ x

s ∈ (S−1V ) r
s
.

4 Sub vector spaces in frac-
tions of R-vector spaces

In this section we introduce the concept of
sub vector space in fractions of R-vector
space and study certain properties. Now
we introduce the definition of sub R-vector
space of an R-vector space V in the follow-
ing

Definition 4.1. Let V be an R-vector
space. A non empty subset W of V is
called a sub R-vector space of V if
(i).For x, y ∈ W ,x− y ∈ W .
(ii). For a ∈ R and x ∈ W ,|a|x ∈ W .

Remark 4.2. If V is an R-vector space,W
is a sub R-vector space of V then it is clear
that W itself is an R-vector space.

Lemma 4.3. Let V be an R-vector space
and W ,U be sub R-vector spaces of V over
R. Then W ∩ U is a sub R-vector space of
V over R.

Proof. Obvious

Definition 4.4. Let S−1V be a vector
space over S−1R. A non empty subset

Litgebih Wondie et al.(2022)
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S−1W of S−1V is called a sub S−1R-vector
space of S−1V provided:
(i). x

s − y
t ∈ S−1W for x

s ,
y
t ∈ S−1W .

(ii). |r|x
st ∈ S−1W for r

s ∈ S−1R and
x
t ∈ S−1W .

Lemma 4.5. Let W be a sub R-vector
space of a vector space V . Then
(i). S−1W is a sub S−1R-vector space of
S−1V .
(ii). s−1x ∈ S−1W ⇔ tx ∈ W for some
t ∈ S

Proof. (i). Let x
s ,

y
t ∈ S−1W and r

u ∈
S−1R. clearly |r|x

us ,
x
s − y

t = tx−sy
st ∈ S−1W .

(ii).suppose x
s ∈ S−1W . ⇒ tx

ts = x
s ∈

S−1W for some t ∈ S. ⇒ tx ∈ W ,ts ∈ S
for some t ∈ S. Suppose tx ∈ W for some
t ∈ S. ⇒ x

s = tx
ts ∈ S−1W for some

t, s ∈ S.

Lemma 4.6. Let V be an R-vector space
and W , U be sub vector spaces of V over
R. Then:
(i). S−1(W ∩ U) = S−1W ∩ S−1U .
(ii). S−1(W + U) = S−1W + S−1U .

Proof. (i). it is clear from the definition.
For (ii). let w

s ∈ S−1W, us ∈ S−1U . ⇒
w
s ∈ S−1(W + U) and u

s ∈ S−1(W + U).
Since S−1(W + U) is a sub S−1R-vector
space of S−1V ,ws + u

s ∈ S−1(W + U). Let
α ∈ S−1(W + U). ⇒ α = w+u

s = w
s + u

s ∈
S−1W + S−1U .

Definition 4.7. Let S−1W and S−1U be
an S−1R-vector spaces. A one to one map-
ping S−1T from S−1W on to S−1U is called
an isomorphism provided:
(i). (S−1T )(xs + y

t ) = (S−1T )(xs ) +
(S−1T )(yt ) for

x
s ,

y
t ∈ S−1W .

(ii).(S−1T )(as ⊙ x
t ) = a

s ⊙ (S−1T )(xt ) for
a
s ∈ S−1R and x

t ∈ S−1W .

Theorem 4.8. Let S−1W and S−1U
be an S−1R-vector spaces. A mapping

S−1T : S−1W → S−1U, (S−1T )(xt ) = Tx
t ,

is an element of Hom(S−1W,S−1U) ⇔
(S−1T )(as ⊙ x

t ) = a
s ⊙ (S−1T )(xt ) for a

s ∈
S−1R and x

t ∈ S−1W .

Proof. Suppose S−1T ∈
Hom(S−1W,S−1U).If x

t ∈ S−1W and
a
s ∈ S−1R, then (S−1T )(as ⊙ x

t +
0
s ⊙ x

t ) =
a
s ⊙ (S−1T )(xt ) + 0

s ⊙ (S−1T )(xt ) =
a
s ⊙ (S−1T )(xt ). Suppose (S−1T )(as ⊙ x

t ) =
a
s ⊙ (S−1T )(xt ). Let ab = 0

and (S−1T )( a
s1

⊙ x
t1

+ b
s2

⊙ y
t2

=

(S−1T )( |a|xs1t1
+ |b|y

s2t2
) = T (|a|x)

s1t1
+ T (|b|y)

s2t2
=

a
s1

⊙ (S−1T )( x
t1
) + b

s2
⊙ (S−1T )( y

t2
).

Theorem 4.9. Let W and U be R-vector
spaces and T : W → U be a strongly lin-
ear homomorphism.Then S−1T : S−1W →
S−1U, ws 7−→ T (w)

s , w ∈ W, s ∈ S is also a
strongly linear homomorphism.

Proof. Let x
t1
, y
t2

∈ S−1W and
a
s1
, b
s2

∈ S−1R.
Now
(S−1T )( a

s1
⊙ x

t1
+ b

s2
⊙ y

t2
) = (S−1T )( |a|xt1s1

+
|b|y
t2s2

) = (S−1T )( (s2t2)(|a|x)+(s1t1)(|b|y)
(s1t1)(s2t2)

)

= T [(s2t2)(|a|x)+(s1t1)(|b|y)]
(s1t1)(s2t2)

=
(s2t2)T (|a|x)+(s1t1)T (|b|y)

(s1t1)(s2t2)
= |a|Tx

s1t1
+ |b|Ty

s2t2

= a
s1

⊙ (S−1T )( x
t1
) + b

s2
⊙ (S−1T )( y

t2
).

Corollary 4.10. Let S−1W and S−1U be
an S−1R-vector spaces. If S−1T : S−1W →
S−1U ,ws 7−→ T (w)

s is a strongly linear ho-
momorphism, then kernel of S−1T is sub
S−1R-vector space of S−1W .

Proof. Let kernel of S−1T = {x
s ∈ S−1W :

(S−1T )(xs ) = 0
s}. Let x

s ,
y
t ∈ ker(S−1T ).

Now, (S−1T )(xs − y
t ) = (S−1T )( tx−sy

st ) =
T (tx−sy)

st = tTx−sTy
st = Tx

s − Ty
t = 0. For

a
s ∈ S−1R and x

t ∈ ker(S−1T ), (S−1T )(as ⊙
x
t ) = (S−1T )( |a|xst ) =

T (|a|x)
st = |a|Tx

st = a
s ⊙

Tx
t = a

s ⊙ (S−1T )(xt ) = 0. Hence kernel of
S−1T is sub S−1R-vector space of S−1W .
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Finally, we prove the following

Theorem 4.11. Let V be an R-vector
space and U be a sub R-vector space of V .
Then S−1(V⧸U) ∼= S−1V⧸S−1U .

Proof. Let T : S−1V⧸S−1U →
S−1(V⧸U) is a map defined by
T (xs + S−1U) = x+u

s .
Let T (xs +S−1U) = T (ys +S−1U) for x, y ∈
V and s ∈ S ⇒ x+u

s = y+u
s ⇔ ∃v ∈ S such

that v(s(x+u)) = v(s(y+u)) ⇒ βx+U =

βy + U ⇒ β(x − y) ∈ U ⇒ βs(x−y)
ss ∈

S−1U ⇒ β(xs − y
s ) ∈ S−1U ⇒ x

s + S−1U =
y
s + S−1U ⇒ T is one to one. Clearly T is
on to.
Let x

s + S−1U, yt + S−1U ∈ S−1V⧸S−1U .
Now, T (xs + S−1U + y

t + S−1U) =

T (xs + y
t + S−1U) = T ( tx+sy

st + S−1U) =
(tx+sy)+u

st = t(x+u)
ts + s(y+u)

st =
T (xs + S−1U) + T (yt + S−1U).
Let a

s ∈ S−1R and x
t + S−1U ∈

S−1V⧸S−1U . T (as ⊙ (xt + S−1U)) =

T ( |a|xst + S−1U) = |a|x+u
st = |a|(x+u)

st =
a
s ⊙ (x+u

t ) = a
s ⊙ T (xt + S−1U).
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