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Abstract 

This work provides an analytical method for the rotational flow of an electrical MHD Maxwell 
fluid that is limited by an elastic sheet that deforms linearly. Analysis of mass transfer is 
completed in the presence of HHR. The standard transformation is applied to translate the 
governing equations into similarity equations, which are then solved by the OHAM (optimal 
homotopy asymptotic technique). We have found that the OHAM technique works well, 
consistent, dependable, and efficient when it comes to solving highly nonlinear differential 
equations. For a certain range of Maxwell fluid parameters, concentration and velocity profiles 
are computed and explained. The rotation-strength parameter λ has a significant impact on the 
flow fields. The velocity curves are an oscillatory fading function of the dimensionless vertical 
distance for large values of λ. In the presence of an electric field, increasing the magnetic field 
first causes the velocity field to decrease, but eventually it starts to increase noticeably. As 
chemical reaction strengths increase, the concentration distribution at the sheet is observed to 
decrease. The current calculations are compared to those of previously published studies, and the 
results seem credible.   

Keywords: OHAM, Electric field, Chemical reaction, Rotating frame, Maxwell fluid  

ORIGINAL RESEARCH 

Introduction 

Fluids which are non-Newtonians convert 

their flow behavior or viscosity under stress. 

Illustrative examples are food products, 

polymer solutions, fibers in liquid paper pulp, 

molten plastics, emulsions of water in oil, etc. 

Maxwell fluids are special kind of non-

Newtonian fluids which reveal an added 

feature of elasticity apart from viscosity, that 

is, they have the capacity to store and recover 

shear energy. Maxwell fluid is a common 

viscoelastic model that can forecast stress 

relaxation occurrence for a variety of 

polymeric liquids. HT and MHD flow for 

Maxwell fluid with variable thermal 

conductivity over a surface which is 

exponentially stretching were addressed by 

Singh and Agarwal.   

Non-Newtonians fluids change their viscosity 

or flow characteristics when under stress. 

Food items, polymer solutions, the fibers in  liquid 
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paper pulp, molten polymers, water-in-oil 

emulsions, etc. are some instances that serve as 

illustrations. A unique class of non-Newtonian 

fluids known as Maxwell fluids exhibit the 

ability to store and recover shear energy, a 

characteristic of elasticity in addition to 

viscosity. A popular viscoelastic model that can 

predict the onset of stress relaxation in a range 

of polymeric liquids is the Maxwell fluid. Singh 

and Agarwal (Singh and Agarwalb, 

2014) investigated HT and MHD flow for 

Maxwell fluid with changing thermal 

conductivity across an increasingly stretched 

surface. Waini et al. (2017) discussed the 

associated magnetic field impacts on HT and the 

flow of the upper-convected Maxwell fluid. The 

impacts of heat sink/source and chemical 

reaction on MHD Maxwell nanofluid flow over 

a heated surface was analytically solved 

by  Sravanthi and Gorla, (2018). Agbaje and 

Leach (2020) investigated numerically the 

impact of heat generation, thermal radiation and 

chemical reaction on vertical permeable flat 

plate for the Jeffrey nanofluid flow. 
Considerable research in this area has been 

published by many researchers (see, for 

instance, (Khan et al., 2016; Hsiao, 2017; Ali et 

al., 2018)). 

Numerous applications in science, engineering, 

and geophysics include rotating fluid flow 

problems. Food processing, vacuum cleaners, 

pumps, jet engines, chemical processes, 

solidification, centrifugal casting of metals, and 

rotating gear are a few significant technical uses. 

Rotating flows around constantly deforming 

sheets have received a lot of interest recently. 

The first work in this subject was reported by 

Wang (1988) ,who investigated the FF across a 

stretching sheet immersed in a rotating 

Newtonian fluid. Subsequently, Nazar et 

al. (Nazar, Amin and Pop, 2004) used numerical 

methods for velocity profiles to expand Wang's 

investigation for unstable fluid flow scenarios. 

Kumari et al. (2006) investigated the rotational 

flow of a non-Newtonian power-law fluid across 

a stretchy sheet. The 3D rotating flow of Jeffrey 

fluid for the Cattaneo-Christov heat flux model 

was investigated by Hayat et al. (2016).The 

numerical method was utilized by Zaimi et al. 

(2013) to investigate visco-elastic fluid flow 

within a rotating frame that is restricted by a 

stretchable sheet. The effects of radial stretching 

in the Von Karman whirling flow issue of an 

infinite disk were examined by Turkyilmazoglu 

(2012). Turkyilmazoglu (2014) expanded the 

Bodewadt flow problem to a disk that is 

expanding circumferentially and at a constant 

pace in a radial direction. The aforementioned 

issue was further upon by Mustafa et al. (2015) 

for the scenario of a nano-fluid containing five 

different kinds of nanoparticles. 

Both homogeneous and heterogeneous reactions 

occur in the majority of chemical reaction 

systems. A reaction is said to be homogeneous if 

it takes place at the same phase in solution while 

a heterogeneous reaction happens at more than 

one phase. Many processes containing both 

reactions are combustion, biochemical system, 

catalysis, distillation process, hydro-

metallurgical devices, production of ceramics, 

etc. A variety of chemical reactions with 

practically important applications, proceed very 

slowly, or not, except in the existence of catalyst.  

HHR occur at the same time in many chemical 

systems including catalysis, combustion and 

biochemical systems. Merkin (1996) used an 

identical model of HHR in a BLF over a flat 

surface. His results reveal that heterogeneous 

(surface) reaction is dominant closer to the 

leading edge of the surface. Recently, Alam et 

al. (2021) investigated the HHR through a 

hybrid nano-fluid flowing over a rotating disc.  

Ahmed et al. (2021) studied the physical aspects 

of HHR on MHD Williamson fluid flow across 

a non-linear stretching curved sheet. Other 

researchers also studied on HHR in different 

fluid flow conditions (Sen et.al., 2021; Reddy et 

al., 2021)). Recently, some researchers studied 

the impact of magnetic field in different fluid 

flow condition ( Ali et al.,   2022; Ali et al., 

2022; Ali et al., 2022; Adem, 2020, 2023)). 
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The following factors highlight the originality of 

the current study: 

Maqsood et al.  (2017)studied the viscoelastic 

FF in rotating frame considering HHR 

numerically. Motivating from their work we 

included the magnetic and electric fields on the 

fluid flow and treated the problem analytically 

using OHAM. Thus, to the author’s knowledge, 

there are no studies have been communicated so 

far with regard to the analytical treatment of 

HHR in electrical MHD non-Newtonian 

Maxwell fluid flow in a rotating frame. Hence, 

this article aims to frame the problem of the 

electrical MHD Maxwell fluid flows and solve 

analytically using OHAM. Graphical artworks 

are found and clarified in the presence of new 

physical characteristics namely non-Newtonian 

fluid, rotating frame, electric field and HHR in 

this research. 

2. Mathematical Formulation  

Assume that an elongated planar elastic surface 

in the x -direction causes a laminar flow of 

binary electrically conducting viscoelastic fluid 

that obeys the Maxwell model. We choose a 3D 

axis in which z axis−  is aligned vertically 

upward and surface occupies the xy plane− . 

Maxwell fluid filling half space 0z  rotates 

uniformly about z axis−  with constant rate Ω 

(see Fig. 1). The magnetic field 𝐵0 and electric 

field 
0

E are acting in z -direction. We also 

examine the possibility of species in the flow 

field that are involved in chemical reactions. 

Because the flow problem is truly three-

dimensional, rotating frame generates a Coriolis 

force. Hereafter the components of the Coriolis 

force vector are 𝜌(−2𝛺𝑣, 2𝛺𝑢, 0). One can 

suppose that a simple model of HHR occurs, 

given mathematically by Chaudhary and Merkin  

(1996)  and Maqsood et al. (2017)):  

2
2 3 ,

c
B A B rate k b a+ → =        (1) 

whereas the catalyst surface is assumed to have 

an isothermal reaction and to be first-order given 

by:       

    ,   ,sA B rate ak→ =       (2) 

 
Figure 1. Physical configuration and coordinate 

system    

where 𝑎  and  𝑏 symbolize the concentration of 

chemical species A  and B  respectively while 

𝑘𝑐 and𝑘𝑠are constants. The expression (1) 

confirms that the reaction rate at the outer edge 

of the BL is zero.  

The following are the expressions for the BL 

equations that describe the flow and MT in a 

Maxwell fluid. (see, Shah et al. (Shah et al., 

2018), Shafique et al. (Shafique, Mustafa and 

Mushtaq, 2016) and  Shah et al.(Shah et al., 

2017)): 

 
𝜕𝑤

𝜕𝑧
+
𝜕𝑣

𝜕𝑦
+
𝜕𝑢

𝜕𝑥
= 0,                 (3) 
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 (
𝜕𝑢

𝜕𝑥
) 𝑢 + (

𝜕𝑢

𝜕𝑦
) 𝑣 + (

𝜕𝑢

𝜕𝑧
)𝑤 − 2𝛺𝑣 −𝜈

𝜕2𝑢

𝜕𝑧2
−   𝑢

𝜎𝐵0
2

𝜌
+
𝜎𝐵0𝐸0

𝜌
 

+𝜆1 (

(
𝜕2𝑢

𝜕𝑥2
) 𝑢2 + (

𝜕2𝑢

𝜕𝑦2
) 𝑣2 + (

𝜕2𝑢

𝜕𝑧2
)𝑤2 + 2𝑢𝑣

𝜕2𝑢

𝜕𝑥𝜕𝑦
+ 2𝑣𝑤

𝜕2𝑢

𝜕𝑦𝜕𝑧

−2𝛺 ((
𝜕𝑣

𝜕𝑥
) 𝑢 + (

𝜕𝑣

𝜕𝑦
) 𝑣 + (

𝜕𝑣

𝜕𝑧
)𝑤) + 2𝛺 (𝑣

𝜕𝑢

𝜕𝑥
− 𝑢

𝜕𝑢

𝜕𝑦
) + 2𝑢𝑤

𝜕2𝑢

𝜕𝑥𝜕𝑧

) = 0               (4)

(
𝜕𝑣

𝜕𝑥
) 𝑢 + (

𝜕𝑣

𝜕𝑦
) 𝑣 + (

𝜕𝑣

𝜕𝑧
)𝑤 + 2𝛺𝑢 − 𝜈

𝜕2𝑣

𝜕𝑧2
− 𝑣

𝜎𝐵0
2

𝜌
−
𝜌𝐵0𝐸0

𝜌

+𝜆1 (
𝑢2 (

𝜕2𝑣

𝜕𝑥2
) + 𝑣2 (

𝜕2𝑣

𝜕𝑦2
) + 𝑤2 (

𝜕2𝑣

𝜕𝑧2
) + 2𝑢𝑣

𝜕2𝑣

𝜕𝑥𝜕𝑦
+ 2𝑣𝑤

𝜕2𝑣

𝜕𝑦𝜕𝑧

−2𝛺 (𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+𝑤

𝜕𝑢

𝜕𝑧
) + 2𝛺 (𝑣

𝜕𝑣

𝜕𝑥
− 𝑢

𝜕𝑣

𝜕𝑦
) + 2𝑢𝑤

𝜕2𝑣

𝜕𝑥𝜕𝑧

) = 0              (5) 

𝑢
𝜕𝑎

𝜕𝑥
+ 𝑣

𝜕𝑎

𝜕𝑦
+𝑤

𝜕𝑎

𝜕𝑧
= 𝐷𝐴

𝜕2𝑎

𝜕𝑧2
− 𝑎𝑘𝑐𝑏

2      (6) 

𝑢
𝜕𝑏

𝜕𝑥
+ 𝑣

𝜕𝑏

𝜕𝑦
+ 𝑤

𝜕𝑏

𝜕𝑧
= 𝐷𝐵

𝜕2𝑏

𝜕𝑧2
+ 𝑎𝑘𝑐𝑏

2      (7) 

The following are the BCs for the current issue: 

𝑢𝑊(𝑥) = 𝑢(𝑥, 0) = 𝑥𝑐,   𝑣(𝑥, 0) = 0      (8a) 

( ),0 0w x =                                        (8b) 

{
𝐷𝐴 (

𝜕𝑎

𝜕𝑧
)
𝑧=0

= 𝑎(𝑥, 0)𝑘𝑠 ,

𝐷𝐵 (
𝜕𝑏

𝜕𝑧
)
𝑧=0

= −𝑎(𝑥, 0)𝑘𝑠
                 (8c) 

𝑢 → 0,  𝑣 → 0,  𝑎 → 𝑎0,  𝑏 → 0,   as  𝑧 → ∞  (9) 

Here 𝑢,  𝑣 and 𝑤 represent the velocity 

components in the directions of 𝑥,  𝑦 and 𝑧, 
respectively, 𝜆1is the fluid relaxation time, 

𝐷𝐴 and 𝐷𝐵 . 𝐷𝐵 stand for respective diffusing 

coefficients, 𝜈 stands for kinematic viscosity and 

𝑐 > 0 symbolizes the stretching rate. The terms 

appearing with 𝛺 are as a result of Coriolis force. 

The last terms in Equations (6) and (7) indicate 

the consumption rate of chemical species A and 

production rate of chemical species B,  

respectively.  

It is evident from condition (8a) that there is no 

requirement for slip at the wall, condition (8b) 

indicates impermeability of the stretching sheet, 

conditions (8c) shows that mass fluxes of species

A  and B  are proportional to the concentration 

of species A  at the surface and condition (9) 

shows that velocity and concentration 

differences disappear at far distance from the 

boundary. 

 

By selecting a suitable similarity variable 𝜂 =

𝑧√𝑐/𝜐, We suggest the following quantities 

(see, Bachok et al. (Bachok, Ishak and Pop, 

2011) and Maqsood et al.(Maqsood, et al., 

2017)): 

{
𝑢 = 𝑓 ′(𝜂)𝑐𝑥,  𝑣 = 𝑟(𝜂)𝑐𝑥,  𝑤 = −√𝜈𝑐𝑓(𝜂),

𝑎 = ℎ(𝜂)𝑎0,   𝑏 = 𝐻(𝜂)𝑎0,
  (10) 

in which prime designates derivative with respect 

to  . The formulas in Eq. (10) satisfy the 

continuity Eq. (1) whereas Eqs. (4)– (9) 

transformed into the BVPs 

 𝑀(𝐸1 − 𝑓
′) − (𝑓′)2 − 2𝜆(𝛽𝑓𝑟′ − 𝑟) −

𝛽(𝑓2𝑓‴ − 2𝑓𝑓′𝑓″) + 𝑓‴ + 𝑓𝑓″ = 0,           (11) 

𝑟″ + 𝑓𝑟′ − 𝑓′𝑟 − 2𝜆(𝑓′ + 𝛽((𝑓′)2 − 𝑓𝑓″ + 𝑟2)) +

 𝛽(2𝑓𝑓′𝑟′ − 𝑓2𝑟″) − 𝑀(𝑟 − 𝐸1) = 0,             (12) 

ℎ
″ + 𝑆𝑐(𝑓ℎ′ − 𝐾ℎℎ𝐻

2) = 0,        (13) 

 𝛿𝐻′′ + 𝑆𝑐(𝑓𝐻′ + 𝐾ℎℎ𝐻
2) = 0,       (14) 
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with the BCs given below: 

at 𝜂 = 0:                           

𝑓 = 𝑟 = 0,   𝑓 ′ = 1,   ℎ′ = 𝐾𝑠ℎ,   𝛿𝐻
′ = −𝐾𝑠ℎ                                          

(15) 

as : →   

𝑓 ′ → 0, 𝑟 → 0,   ℎ → 0,  𝐻 → 0.             (16) 

 

The symbols 𝜆, 𝛽, 𝑆𝑐, 𝛿,  𝑘ℎ, 𝑘𝑠, 𝑀 and 𝐸1 

represent the rotation-strength parameter, 

Deborah number, Schmidt number, ratio of 

diffusion coefficients, homogeneous  reaction 

strength parameter, heterogeneous reaction 

strength parameter, magnetic and electric field 

parameters respectively. These are expressed as 

follows

{

𝛽 = 𝜆1𝑐,   𝜆 =
𝛺

𝑐
,   𝑆𝑐 =

𝜈

𝐷𝐴
, 𝐾ℎ =

𝑘𝑐𝑎0
2

𝑐
,   

𝑀 =
𝜎𝐵0

2

𝜌𝑐
, 𝐸1 =

𝐸0

𝐵0𝑢𝑤
, 𝛿 =

𝐷𝐵

𝐷𝐴
,  𝐾𝑠 =

𝑘𝑠

𝐷𝐴
√
𝜈

𝑐
,  .

  

                                         (17)                       

The diffusion coefficients of species A  and B

are expected to be similar in size in many real-

world situations. This allows us to assume 

further that the coefficients 𝐷𝐴 and 𝐷𝐵 are 

equal, meaning that 𝛿 ≈ 1.  Considering 

the circumstances (15) and (16), we can 

write: 

    ℎ(𝜂) + 𝐻(𝜂) = 1.                     (18) 

In light of this, Eqs. (13) and (14) can be 

combined to get the single equation that follows: 

ℎ
″ + 𝑆𝑐(𝑓ℎ′ − 𝐾ℎℎ(1 − ℎ)2) = 0       (19) 

subjected to the BCs: 

ℎ
′(0) = 𝐾𝑠ℎ(0)  and  ℎ(∞) → 1.          (20) 

 

Skin friction coefficients along the x- and y-

directions are defined as follows: 

       𝐶𝑓𝑥 =
𝜏𝑤𝑥

𝜌𝑢𝑤
2 , 𝐶𝑓𝑦 =

𝜏𝑤𝑦

𝜌𝑣𝑤
2 , 

 

where the surface shear stresses wx  and 
wy  

along the x -and y - directions are given by 

 

𝜏𝑤𝑥 = 𝜇 [
𝜕𝑢

𝜕𝑧
]
𝑧=0
, 𝜏𝑤𝑦 = 𝜇 [

𝜕𝑣

𝜕𝑧
]
𝑧=0

. 

 

Dimensionless skin friction coefficients are 

𝐶𝑓𝑥(𝑅𝑒𝑥)
1

2 = (1 + 𝛽)𝑓′′(0), 𝐶𝑓𝑦(𝑅𝑒𝑦)
1

2 = (1 +

𝛽)𝑟′(0) 

Where (𝑅𝑒𝑥)
1

2 = 𝑥√𝑐/𝜐, (𝑅𝑒𝑦)
1

2 = 𝑦√𝑐/𝜐 denote 

the local Reynolds number. 

 

3. Analytical Solution Using OHAM 

The OHAM is now applied to non-linear ODEs 

(11), (12) and (19) along with the BCs (15) and 

(16) by considering the following assumptions 

{

𝑔 = 𝑔0 + 𝑝𝑔1 + 𝑝
2𝑔2, 𝑓 = 𝑓0 + 𝑝𝑓1 + 𝑝

2𝑓2,

ℎ = ℎ0 + 𝑝ℎ1 + 𝑝
2ℎ2, 𝐻1(𝑝) = 𝑝𝐶1 + 𝑝

2𝐶2,

𝐻2(𝑝) = 𝑝𝐶3 + 𝑝
2𝐶4, 𝐻3(𝑝) = 𝑝𝐶5 + 𝑝

2𝐶6,

    (21)   

where [0,1]p  represented an embeding 

parameter, 𝐻𝑗(𝑝),  𝑗 = 1,2,3 is an auxiliary 

function different from zero, and 𝐶𝑖 ,  (𝑖 =
1,2,3,4,5,6) are convergence parameters 

(Marinca et al. (Marinca et al., 2009)). 

3.1. Analytical Solution of the Momentum 

BLP in the x axis−   

The following supposition is used when 

applying the OHAM to Eq. (11): 

              𝐿 = 𝑓″ + 𝑓 ′ and 
𝑁 = 𝑓‴ + 𝑓𝑓″ − (𝑓′)2 − 2𝜆(𝛽𝑓𝑟′ − 𝑟) −
𝛽(𝑓2𝑓‴ − 2𝑓𝑓′𝑓″) +𝑀(𝐸1 − 𝑓

′) − (𝑓″ + 𝑓′), (22)                

 

Where 𝐿 and 𝑁 are the linear and non-linear 

operators, respectively. Consequently, the 

equation of OHAM family is written as follows. 
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      (1 − 𝑝)(𝑓″ + 𝑓 ′) =

𝐻1(𝑝) [
𝑓‴ + 𝑓𝑓″ − (𝑓 ′)

2
− 2𝜆(𝛽𝑓𝑟 ′ − 𝑟)

−𝛽(𝑓2𝑓‴ − 2𝑓𝑓 ′𝑓″) +𝑀(𝐸1 − 𝑓
′)
].   (23) 

Following a lengthy exercise, utilizing the BCs 

(15-16) and equating the same powers of 

p terms− , we have got the following: 

When we solve the zero-order equation 
0
, p  we 

got  

𝑓0
′ + 𝑓0

′′ = 0 ,    𝑓0(0) = 0,   𝑓0
′(0) = 1.    (24) 

           𝑓2
′′ + 𝑓2

′ = 𝑓1
′ + 𝑓1

′′ +

𝐶1 [

𝑓1𝑓0
′′ − 2𝑓0

′𝑓1
′ −𝑀𝑓1

′ − 2(−𝜆𝑟1 + 𝜆𝛽(𝑓0𝑟1
′ + 𝑓1𝑟0

′)) +

𝑀𝐸1  − 𝛽 [𝑓1
2𝑓0

′′′ − 2(
𝑓0𝑓1

′𝑓1
′′ − 𝑓0𝑓1 𝑓1

′′′

+𝑓1𝑓0
′𝑓1

′′ + 𝑓1𝑓1
′𝑓0

′′
)] + 𝑓0𝑓1

′′ + 𝑓1
′′′
]    

(25) 

+𝐶2 [
𝑓0
′′′ − 𝑓0

′2 + 𝑓0𝑓0
′′ − 2(𝛽𝜆𝑓0𝑟0

′ − 𝜆𝑟0)

−𝛽(𝑓0
2𝑓0

′′′ − 2𝑓0𝑓0
′𝑓0

′′) − 𝑀(𝐸1 − 𝑓0′)
],    

 𝑓2(0) = 0,  𝑓2
′(0) = 0.         (26)  

The following was the result of solving ODEs 

(24)–(26) with the associated BCs: 

𝑓0 = 1 − 𝑒
−𝜂                    (27) 

        

𝑓1=
𝐶1𝑒

−3𝜂

6

(

 
 
 
 

6𝑀(𝑒2𝜂 − 𝑒3𝜂) − 6𝑒𝜂𝛽𝜂𝜆 +

6𝑒2𝜂𝐸1𝑀 − 6𝑒
3𝜂𝐸1𝑀 + 𝛽 +

3𝑒2𝜂𝛽 − 4𝑒3𝜂𝛽 + 6𝑒2𝜂𝑀𝜂 +

6𝑒3𝜂𝐸1𝑀𝜂 + 6𝑒
2𝜂𝛽𝜂 − 12𝑒2𝜂𝜆 +

12𝑒3𝜂𝜆 − 3𝑒𝜂𝛽𝜆 + 3𝑒3𝜂𝛽𝜆

−12𝑒2𝜂𝜂𝜆 − 6𝑒2𝜂𝜂2𝜆 −   6𝑒2𝜂𝛽𝜂2𝜆)

 
 
 
 

 (28) 

The size of the term, 
2

f , prevents its mention 

here. Thus, the answer ( )f   is stated as: 

 𝑓(𝜂, 𝐶𝑖) = 𝑓0(𝜂, 𝐶𝑖) +   𝑓1(𝜂, 𝐶𝑖) +   𝑓2(𝜂, 𝐶𝑖), 
where𝑖 = 1, 2, 3, 4.                      (29) 

 

Utilizing the equation of residual for the issue 

revealed in the form, we can determine the 

unknown constants. 

𝑅1(𝜂, 𝐶𝑖) = 𝑓
‴ + 𝑓𝑓″ − (𝑓 ′)2 − 2𝜆(𝛽𝑓𝑟′ −

𝑟)  − 𝛽(𝑓2𝑓‴ − 2𝑓𝑓 ′𝑓″) + 𝑀(𝐸1 − 𝑓
′).      (30) 

The next conditions, which are listed below, can 

best be used to get the parameters of 

convergence 𝐶𝑖 ,  𝑖 = 1,2,3,4. 

𝜕𝐽1(𝐶𝑖)

𝜕𝐶1
=
𝜕𝐽1(𝐶𝑖)

𝜕𝐶2
=
𝜕𝐽1(𝐶𝑖)

𝜕𝐶3
=
𝜕𝐽1(𝐶𝑖)

𝜕𝐶4
= 0, 

where  𝐽1(𝐶𝑖) = ∫ 𝑅1
25

0
(𝜂, 𝐶𝑖)𝑑𝜂.             (31) 

Consequently, the condensed solution will be 

𝑓(𝜂) = 𝑓0(𝜂) +   𝑓1(𝜂) +   𝑓2(𝜂)            (32)         

 

The parameters of convergence are computed 

using 𝛽 = 0, 𝐸1 = 0.1,   𝑀 = 0.2,   and 𝜆 = 0.3, 
is a specific instance. 

𝐶1 = 0.8176030448003411,     
𝐶2 = 0.5245380836764166, 
𝐶3 =  0.5144612280520182,   
𝐶4 = 0.05601353192963746. 

 

 

 

The semi-analytical solution can be presented as:

𝑓(𝜂) = 1 − 𝑒−𝜂 + 0.1362671741𝑒−3𝜂 (
0.−2.27999999994𝑒2𝜂 + 2.2799999999994𝑒3𝜂

−2.3999999999995𝑒2𝜂𝜂 + 0.1200000000002𝑒3𝜂𝜂

−1.799999999998𝑒2𝜂𝜂2
) +  𝑓2(𝜂, 𝐶𝑖).  

                                    (33)
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When the parameters are substituted, we obtain 

𝑓(𝜂) = 1 − 𝑒−𝜂 + 0.1362671741𝑒−3𝜂 (
0.−2.279999999994𝑒2𝜂 + 2.2799999999994𝑒3𝜂

−2.3999999999995𝑒2𝜂𝜂 + 0.1200000000002𝑒3𝜂𝜂

−1.799999999998𝑒2𝜂𝜂2
) 

                       +
𝑒−5𝜂

21600
(

−1514.25023935338𝑒2𝜂 − 1607.3394846448𝑒3𝜂

+8380.22046829731𝑒4𝜂 − 5258.630744299022𝑒5𝜂

+505.216346032604𝑒4𝜂𝜂 + 117.574434914767𝑒5𝜂𝜂

−4305.93219299421𝑒4𝜂𝜂2 + 242.280038296542𝑒4𝜂𝜂3

)    (34) 

 

3.2. Analytical Solution of the Momentum BLP in the 𝑦 − 𝑎𝑥𝑖𝑠 

Non-linear ODE (12) is subjected to the OHAM by applying the following assertion.    
           𝐿 = 𝑟 + 𝑟′ and 
 𝑁 = 𝑟˝ + 𝑓𝑟′ − 𝑓′𝑟 − 2𝜆(𝑓′ + 𝛽(𝑓′)2 − (𝑓𝑓" + 𝑟2) + 𝑓𝑟 ′ + 𝛽(2𝑓𝑓 ′𝑟 ′ − 𝑓2𝑟″) − 𝑀(𝑟 − 𝐸1) − (𝑟

′ + 𝑟),  (35)  

where  and L N are the linear and non-linear operators, respectively. The OHAM family equation is 

thus written as: 

 (1 − 𝑝)(𝑟 ′ + 𝑟) = 𝐻2(𝑝)(
𝑟″ − 𝑓 ′𝑟 − 2𝜆 (𝑓 ′ + 𝛽 ((𝑓 ′)

2
− 𝑓𝑓″ + 𝑟2))

  + 𝛽(2𝑓𝑓 ′𝑟 ′ − 𝑓2𝑟″) − 𝑀(𝑟 − 𝐸1) + 𝑓𝑟
′
).                      (36) 

 

Following simplification, utilizing the BCs (15-16), equating the similar powers of p terms− , we 

arrive at the following: 

When we solve the zero-order equation 
0
, p  we get: 

𝑟0
′ + 𝑟0 = 0,     𝑟0(0) = 0              (37) 

When we solve the first-order equation 
1

p , we get 

 𝑟1
′ + 𝑟1 = 𝑟0

′ + 𝑟0  + 𝐶3 [
−𝑀(𝑟0 − 𝐸1) + 2𝜆 (𝑓0

′ + 𝛽 (𝑓 ′
0

2
− 𝑓0𝑓0

′′ + 𝑟0
2))

+𝛽(2𝑓0𝑓0
′𝑟0

′ − 𝑟0
′′𝑓0
2)𝑟0

′′ − 𝑓0
′𝑟0 + 𝑓0𝑟0

′  
],  𝑟1(0) = 0.      (38) 

When we solve the second-order equation 
2
,p we get 

              
' '

2 1 1r r r r+ = +  + 𝐶3

(

 
 
 
 𝑓1𝑟0

′ − 𝑓0
′𝑟1 − 𝑓1

′𝑟0 − 2𝜆(𝑓1
′ + 𝛽 (

2𝑓0
′𝑓1

′ − 𝑓0𝑓1
′′

−𝑓1𝑓0
′′ + 2𝑟0𝑟1

))

  + 𝛽(
2(
𝑓0𝑓1

′𝑟1
′ + 𝑓1𝑓0

′𝑟1
′

+𝑓1𝑓1
′𝑟0

′
)

−2𝑟0𝑟1𝑟1
′′ − 𝑟1

2𝑟0
′′

)−𝑀(𝑟1 − 𝐸1) + 𝑟1
′′ + 𝑓0𝑟1

′

)

 
 
 
 

  

+𝐶4 [
𝑓0𝑟0

′ + 2𝜆 (𝑓0
′ + 𝛽 (𝑓 ′

0

2
− 𝑓0𝑓0

′′ + 𝑟0
2)) +

𝛽(2𝑓0𝑓0
′𝑟0

′ − 𝑟0
′′𝑓0
2) − 𝑀(𝑟0 − 𝐸1) + 𝑟0

′′ − 𝑓0
′𝑟0 

 ]   ,    𝑟2(0) = 0.                (39) 

When the ODEs (37) through (39) are solved using the associated BCs, we obtain 

 

𝑟0 =  𝜂𝑒−𝜂                          (40) 
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 𝑟1 =  −
𝑒−3𝜂

4

(

  
 

−4 𝐶3 e𝜂 + 4 𝐶3 e2𝜂 + 4 𝐶3 e2𝜂 𝐸1 M− 4𝐶3 e3𝜂𝐸1 M

+𝐶3 β− 8𝐶3 e𝜂 β + 7 𝐶3 e2𝜂 β − 4 e2𝜂 η+ 4𝐶3 e2𝜂 η

+2 𝐶3 β η− 8𝐶3 e2𝜂β η + 2 𝐶3 e2𝜂 M η2 + 2 𝐶3 e2𝜂 β η2

−16𝐶3 e𝜂 β λ + 16𝐶3 e2𝜂 β λ + 8 𝐶3 e2𝜂 η λ − 16𝐶3 e𝜂 β η λ

+8 𝐶3 e2𝜂 β η λ − 8 𝐶3 e𝜂β η2 λ )

  
 

                (41) 

 

The size of the other term, 2r , prevents its mention here. Thus, the answer ( )r   is stated as: 

( ) ( ) ( ) ( )0 1 2, ,    ,    , , 1,2,3,4.i i i ir C r C r C r C i   = + + =                                 (42) 

 

The problem's residual equation, which takes the form: 

 𝑅2(𝜂, 𝐶𝑖) = 𝑟
″ + 𝑓𝑟 ′ − 𝑓 ′𝑟 − 2𝜆(𝑓 ′ + 𝛽((𝑓 ′)2 − 𝑓𝑓″ + 𝑟2)) + 𝛽(2𝑓𝑓 ′𝑟 ′ − 𝑓2𝑟″) − 𝑀(𝑟 − 𝐸1).     (43) 

The next conditions can be used to determine the parameters𝐶𝑖 ,  𝑖 = 1, 2, 3, 4.  

 
𝜕𝐽2(𝐶𝑖)

𝜕𝐶1
=
𝜕𝐽2(𝐶𝑖)

𝜕𝐶2
=
𝜕𝐽2(𝐶𝑖)

𝜕𝐶3
=
𝜕𝐽2(𝐶𝑖)

𝜕𝐶4
= 0, where  𝐽2(𝐶𝑖) = ∫ 𝑅2

25

0
(𝜂, 𝐶𝑖)𝑑𝜂.            (44) 

Once the parameters have been obtained, the solution will be provided by 

                                                   (45) 

In specific circumstances, 𝛽 = 0,  𝐸1 = 0.1,   𝑀 = 0.2, and 𝜆 = 0.3, the convergence parameter 

values are calculated as 

 𝐶1 = 0.8176030448003411,    

 𝐶2 = 0.5245380836764166,         

 𝐶3 =  0.5144612280520182,    

𝐶4 = 0.05601353192963746.   

The approximate semi-analytical solution is expressed as 

𝑟(𝜂, 𝐶𝑖) = 𝜂𝑒
−𝜂 −

𝑒−3𝜂

4
 

(

 
 

−4 𝐶3 (𝑒𝜂 −  e2𝜂 + 4 e𝜂 β η λ) − 4 𝐶3 e2𝜂 𝐸1 M+ 4𝐶3 e3𝜂𝐸1 M

+𝐶3 β − 8𝐶3 e𝜂 β+ 7 𝐶3 e2𝜂  β− 4 e2𝜂  η+ 4𝐶3 e2𝜂 η+ 2 𝐶3 β η

−8𝐶3 e2𝜂β η+ 2 𝐶3 e2𝜂  M η2 + 2 𝐶3 e2𝜂 β η2 − 16𝐶3 e𝜂 β λ

+16𝐶3 e2𝜂 β λ+ 8 𝐶3 e2𝜂  η λ+ 8 𝐶3 e2𝜂 β η λ− 8 𝐶3 e𝜂β η2 λ )

 
 
 +  𝑟2(𝜂, 𝐶𝑖).  (46)                                               

 

 

 

( ) ( ) ( ) ( )0 2     .r r r r   = + +
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After changing the parameters, we obtained 

𝑟(𝜂) = 𝑒−𝜂𝜂 −
𝑒−3𝜂

4
(
−2.057844912208073𝑒𝜂 + 2.016688013963911𝑒2𝜂

+0.0411568982441614𝑒3𝜂 − 0.70744814046708𝑒2𝜂𝜂

+0.20578449122080𝑒2𝜂𝜂2
) 

  +
𝑒−5𝜂

864

(

 
 

−114.337593432917𝑒2𝜂 + 34.20160830622876𝑒3𝜂

+93.44012892104615𝑒4𝜂 − 13.304143794357435𝑒5𝜂

−263.7870718400552𝑒3𝜂𝜂 + 142.8809552579719𝑒4𝜂𝜂

−109.026017233444𝑒3𝜂𝜂2 − 81.5275282488180𝑒4𝜂𝜂2

−22.703502583882𝑒4𝜂𝜂3 )

 
 

  (47) 

 

 

3.3. Analytical Solution of the Concentration BLPs 

  

The OHAM is employed to Equation (19) under the next statements 

                                   and L h h+=  

𝑁 = ℎ
″ + 𝑆𝑐(𝑓ℎ′ − 𝐾ℎℎ(1 − ℎ)2) − (ℎ′ + ℎ),                                                        (48) 

where  and L N are the linear and non-linear operators, respectively. The OHAM family of equations 

is thus given by 

(1 − 𝑝)(ℎ′ + ℎ) = 𝐻3(𝑝)[ℎ
″ + 𝑆𝑐(𝑓ℎ′ − 𝐾ℎℎ(1 − ℎ)2)]                                (49) 

The following results are obtained after simplifying, equating similar powers of p terms− , and 

applying BCs (15-16): 

When we solve the zero-order equation 
0 , p  we get 

ℎ0
′ + ℎ = 0,   ℎ0

′ (0) = 𝐾𝑠ℎ0(0).                                  (50) 

When we solve the 1st-order equation 𝑝1, we get 

 

ℎ1
′ + ℎ1 = ℎ0

′ + ℎ0 + 𝐶5[ℎ0
′′ + 𝑆𝑐(𝑓0ℎ0

′ − 𝐾ℎℎ0(1 − ℎ0)
2)],  ℎ1′(0) = 0.              (51) 

 

When we solve the 2nd -order equation p2, we get 

                
' '

2 2 1 1h h h h+ = + ℎ2
′ + ℎ2 = ℎ1

′ + ℎ1 + 𝐶5[ℎ1
′′ + 𝑆𝑐(𝑓0ℎ′1 + 𝑓1ℎ0

′ − 𝐾ℎℎ1(1 − ℎ1)
2)] 

+𝐶6[ℎ0
′′ + 𝑆𝑐(𝑓0ℎ0

′ − 𝐾ℎℎ0(1 − ℎ0)
2)],   ℎ2′(0) = 0.                                (52) 

 

On solving the ODEs (50)-(52), with the BCs, we obtained: 

 

ℎ0 =
 𝑒−𝜂( 𝑒𝜂−𝐾𝑠+ 𝑒𝜂𝐾𝑠)

1+𝐾𝑠
                                          (53)  
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 ℎ1 =
𝑒−3𝜂

2(1+𝐾𝑠)
3

(

 
 
 

2𝑒3𝜂 − 2𝐶5𝑒
2𝜂𝐾𝑠 + 6𝑒

3𝜂𝐾𝑠 − 4𝐶5𝑒
2𝜂𝐾𝑠

2 + 6𝑒3𝜂𝐾𝑠
2 − 2𝐶5𝑒

2𝜂𝐾𝑠
3

+2𝑒3𝜂𝐾𝑠
3 + 2𝐶5𝑒

𝜂𝐾𝑠Sc − 𝐶5𝐾ℎ𝐾𝑠
3Sc + 2𝐶5𝑒

𝜂𝐾ℎ𝐾𝑠
3Sc − 𝐶5𝑒

2𝜂𝐾ℎ𝐾𝑠
3Sc

−2𝐶5𝑒
2𝜂𝐾𝑠𝜂 − 4𝐶5𝑒

2𝜂𝐾𝑠
2𝜂 − 2𝐶5𝑒

2𝜂𝐾𝑠
3𝜂 + 2𝐶5𝑒

2𝜂𝐾𝑠Sc𝜂 − 2𝐶5𝑒
2𝜂𝐾𝑠

3Sc

+4𝐶5𝑒
2𝜂𝐾𝑠

2Sc𝜂 + 2𝐶5𝑒
2𝜂𝐾𝑠

3Sc𝜂 − 2𝐶5𝑒
2𝜂𝐾𝑠Sc + 4𝐶5𝑒

𝜂𝐾𝑠
2Sc

−4𝐶5𝑒
2𝜂𝐾𝑠

2Sc + 2𝐶5𝑒
𝜂𝐾ℎ𝐾𝑠

2Sc − 4𝐶5𝑒
2𝜂𝐾ℎ𝐾𝑠

2Sc + 2𝐶5𝑒
𝜂𝐾𝑠

3Sc )

 
 
 

  (54)    

 

The size of the other term, 
2

h , prevents its mention here. Thus, the expression of the solution is 

written as: 

ℎ(𝜂, 𝐶𝑖) = ℎ0(𝜂, 𝐶𝑖) +   ℎ1(𝜂, 𝐶𝑖) +   ℎ2(𝜂, 𝐶𝑖),  𝑖 = 1,2,3,4,5,6.                     (55) 

The problem's residual equation, which takes the form: 

𝑅3(𝜂, 𝐶𝑖) = ℎ
″ + 𝑆𝑐(𝑓ℎ′ − 𝐾ℎℎ(1 − ℎ)2).                                                (56) 

The following circumstances lead to the best identification of the parameters  
i

C : 

𝜕𝐽3(𝐶𝑖)

𝜕𝐶1
=
𝜕𝐽3(𝐶𝑖)

𝜕𝐶2
=
𝜕𝐽3(𝐶𝑖)

𝜕𝐶3
=
𝜕𝐽3(𝐶𝑖)

𝜕𝐶4
=
𝜕𝐽3(𝐶𝑖)

𝜕𝐶5
=
𝜕𝐽3(𝐶𝑖)

𝜕𝐶6
= 0,                      (57) 

             where  𝐽3(𝐶𝑖) = ∫ 𝑅3
25

0
(𝜂, 𝐶𝑖)𝑑𝜂.   

Once the parameters have been obtained, the simplified solution will be provided by 

ℎ(𝜂) = ℎ0(𝜂) +   ℎ1(𝜂) +   ℎ2(𝜂).                                                (58) 

Considering particular cases, when 
1

0,  0.1,E = = 0.2,M =  and 0.3, =  The parameters are 

calculated and given below  

  

       𝐶1 = 0.8176030448003411, 𝐶2 = 0.5245380836764166,   𝐶3 =  0.5144612280520182, 

       𝐶4 = 0.05601353192963746, 𝐶5 = −0.6655321550273889,  𝐶6 = 9.210023457455835.   

 

Hence the analytical solution is given by:  

ℎ(𝜂, 𝐶𝑖) =
 𝑒−𝜂( 𝑒𝜂 − 𝐾𝑠 +  𝑒𝜂𝐾𝑠)

1 + 𝐾𝑠
 +

𝑒−3𝜂

2(1 + 𝐾𝑠)
3

(

 
 
 
 
 
 
 

2𝑒3𝜂 − 2𝐶5𝑒
2𝜂𝐾𝑠 + 6𝑒

3𝜂𝐾𝑠 − 4𝐶5𝑒
2𝜂𝐾𝑠

2 +

6𝑒3𝜂𝐾𝑠
2 − 2𝐶5𝑒

2𝜂𝐾𝑠
3 + 2𝑒3𝜂𝐾𝑠

3 + 2𝐶5𝑒
𝜂𝐾𝑠Sc −

𝐶5𝐾ℎ𝐾𝑠
3Sc + 2𝐶5𝑒

𝜂𝐾ℎ𝐾𝑠
3Sc − 𝐶5𝑒

2𝜂𝐾ℎ𝐾𝑠
3Sc −

2𝐶5𝑒
2𝜂𝐾𝑠𝜂 − 4𝐶5𝑒

2𝜂𝐾𝑠
2𝜂 − 2𝐶5𝑒

2𝜂𝐾𝑠
3𝜂 +

2𝐶5𝑒
2𝜂𝐾𝑠Sc𝜂 + 4𝐶5𝑒

2𝜂𝐾𝑠
2Sc𝜂 + 2𝐶5𝑒

2𝜂𝐾𝑠
3Sc𝜂 −

2𝐶5𝑒
2𝜂𝐾𝑠Sc + 4𝐶5𝑒

𝜂𝐾𝑠
2Sc − 4𝐶5𝑒

2𝜂𝐾𝑠
2Sc +

2𝐶5𝑒
𝜂𝐾ℎ𝐾𝑠

2Sc − 4𝐶5𝑒
2𝜂𝐾ℎ𝐾𝑠

2Sc + 2𝐶5𝑒
𝜂𝐾𝑠

3Sc −

2𝐶5𝑒
2𝜂𝐾𝑠

3Sc )

 
 
 
 
 
 
 

    

                                +  ℎ2(𝜂, 𝐶𝑖)                                         (59) 
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Upon changing the parameters, we have obtained: 

ℎ(𝜂) = 0.666666666666𝑒−𝜂(−0.5 + 1.5𝑒𝜂) 

          +0.1481481481481𝑒−3𝜂 (
0.0831915193 + 6.75𝑒3𝜂 − 3.494043813893792𝑒𝜂

+5.24106572084068𝑒2𝜂 − 1.4974473488116𝑒2𝜂𝜂
)   

+0.0018289894𝑒−5𝜂

(

 
 

−0.37372476041049413 + 30.894580193934182𝑒𝜂

−559.6485211167734𝑒2𝜂 + 3938.1560196506844𝑒3𝜂

−5197.4129782𝑒4𝜂 + 546.7𝑒5𝜂 + 13.454091374777787𝑒2𝜂𝜂

−413.60489891073127𝑒3𝜂𝜂 + 1521.814002203007𝑒4𝜂𝜂

−59.501831074285946𝑒3𝜂𝜂2 − 42.34566849347625𝑒4𝜂𝜂2 )

 
 

 (60)         

 

4. Results and Discussion 

 

A linearly deforming surface limits the 

rotational flow of electrical MHD Maxwell 

fluid, and a model is created for its effects. 

The group of nonlinear ODEs (11), (12) and 

(19) subject to the BCs (15) and (16) is solved 

analytically by using the OHAM. We make 

known the results to keep up the effect of 

various parameters such as electric field, 

Deborah number, rotation strength parameter, 

HHT strength parameters on the velocity and 

concentration curves. We conducted a 

comparison for ''(0) f  with the results from 

other studies, as shown in Table 1, to verify 

the validity of the OHAM employed in this 

investigation. The current limiting results are 

thought to fit up well with the findings of 

earlier articles that have been published. 

Table 2 demonstrates that as the magnetic 

field parameter increases, skin friction also 

rises. The skin friction does, however, 

decrease as the electric field parameter 

increases. 

 

Figs. 2- 4 illustrate how velocity profiles are 

impacted by the magnetic field M  in both 

the absence and presence of an electric field. 

Figures 2 depicts the impact on the velocity 

curve '( )f   in the nonappearance of an 

electric field. The velocity curve is 

significantly diminished as the value of M is 

raised. Because there is no electric field, the 

Lorenz force upsurges the frictional force, 

functioning as a decelerating force that 

opposes the Maxwell fluid flow. The fluid's 

velocity decreases when an electric field is 

present ( )1    0E  in the direction that  M  

rises, as seen in Fig.3. It greatly outperforms 

the stretched sheet after it reaches a certain 

distance from the wall. An electric field that 

also accelerates the body force upsurges the 

Maxwell fluid flow. Figure 4 illustrates how, 

as M  increases, the velocity curve ( )r  in 

the y -direction rises. This results from the 

effect of the Coriolis force on the Maxwell 

fluid's velocity in the y -direction. 
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Table 1. Comparison of 𝑓′′(0) with previous results for different values of 𝜆 when 𝐸1 = 𝑀 = 𝛽 = 0  

𝜆 
Zaimi et al. (Zaimi, 

Ishak and Pop, 2013) 

Maqsood et al. (Maqsood, 

Khan and M.Mustafa, 2017) 
Present 

0.0 -1.0000 -1.000000 -1.000000 

0.2 -1.0331 -1.033105 -1.033994 

0.4 -1.1009 -1.100905 -1.105931 

0.5 -1.1384 -1.138381 -1.137199 

0.6 -1.1764 -1.176365 -1.179597 

0.8 -1.2581 -1.251776 -1.220244 

1.0 -1.3250 -1.325029 -1.354025 

 

Table 2. Values of the skin-friction 𝐶𝑓𝑥(𝑅𝑒𝑥)
1

2 for dissimilar values of 𝜆, 𝐸1and 𝑀 when 𝛽 = 0.4 

𝝀 𝑬𝟏 𝑴 
𝑪𝒇𝒙(𝑹𝒆𝒙)

𝟏
𝟐 

0.1 0.1 0.2 − 1.167806 

0.3 0.1 0.2 − 1.215860 

0.5 0.1 0.2 − 1.293328 

0.1 0.3 0.2 − 1.115144 

0.1 0.5 0.2 − 1.065529 

0.1 0.8 0.2 − 0.995009 

0.1 0.1 0.4 −0.967055 

0.1 0.1 0.6 −1.224972 

0.1 0.1 0.8 −1.270143 

 
Figure 2. Curves of velocity f'(η)  for various 

values of M in the absence of electric field 𝐸1 

 
 Figure 3. Curves of velocity f'(η)  for various 

values of 𝑀in the presence of electric field 𝐸1   
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Figure 4. Curves of velocity f'(η)  for various 

values of M  

The impact of 𝐸1on the velocity curves are 

displayed in Figs. 5 and 6. As can be 

observed, the velocity along the 𝑥 − direction 

and 𝑦 -direction profiles upsurge as the value 

of the electric field increases. This is because 

the stronger Lorentz force produced by the 

electric field accelerates the streamlines away 

from the stretched plate by reducing frictional 

resistance. The Maxwell fluids' velocity 

increases in both directions as a result. 

 

 

 

 
Figure 5. Curves of velocity f'(η)  for various 

values of electric field parameter E1 

 

Velocity curves f'(η)  and r(η) for different 

values of Deborah number 𝛽 are illustrated for 

a given rotation-strength parameter𝜆in Figs. 9 

and 10, respectively. The curves f'(η)  and r(η) 
are exponentially decrease to zero at closer 

distances from the sheet as 𝛽 increases. This 

illustrates how the depth of momentum 

penetration decreases as the elastic effect 

increases. Higher Deborah numbers 

correspond more closely to the fluid behavior  

     
Figure 6. Curves of velocity 𝑟(𝜂) for various  

values of electric field parameters E1.  

 

a slower rate of recovery. As a result, as 𝛽 rises, 

fluid flow slows in both the  x  and y - 

directions and the boundary layer thins. 

Moreover, the function 𝑟(𝜂) exhibits a mixed 

behavior for the parameter 𝛽. The change in 

concentration ℎ(𝜂) as the rotation-strength 

parameter  is adjusted is shown in Fig.1. 
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Figure 7. Curves of velocityf'(η)  for different 

values of rotation strength parameter λ 

 
Figure 8. Curves of velocity r(η)  for different 

values of rotation strength parameter λ. 

As 𝜂 → ∞, we observed that the concentration 

curve ℎ(𝜂) asymptotically approaches 1 and has 

a finite value at the wall. When the fluid is rotated 

at a higher pace, one can see that ℎ(𝜂) decreases 

and the concentration layer expands. The 

fluctuation in concentration profile ℎ(𝜂) when 

the Deborah number 𝛽 is adjusted is shown in 

Fig. 12. Concentration decreases as 𝛽 increases, 

but its profile widens to indicate an increase in 

the thickness of the concentration layer. 

The variation in the concentration profile ℎ(𝜂) 
as the Schmidt number 𝑆𝑐 varies is shown in 

Fig. 13. For higher values of 𝑆𝑐, a rising trend 

in ℎ(𝜂) is shown. Nevertheless, as 𝑆𝑐 increases, 

the concentration BL strength parameter, 𝐾ℎ , 
on the concentration curve ℎ(𝜂) is portrayed in 

Fig. 4. As the homogenous reaction gets 

stronger, the concentration decreases and the 

concentration BL thickens. The evolution of 

concentration profiles for different values of 

the heterogeneous (surface) reaction strength 

parameter 𝐾𝑠 is depicted in Fig. 15.decreases. 

Physically, a larger value of 𝑆𝑐 implies a lesser 

mass diffusion coefficient, which leads to a 

shorter concentration BL. The behavior of the 

homogeneous reaction The concentration curve 

becomes less steep as the heterogeneous 

reaction intensity increases. It can be inferred 

from the fact that when 𝐾ℎ or 𝐾𝑠 increase, 

reactants are consumed in the flow field, 

causing ℎ(𝜂) to decrease. For different values 

of 𝐾𝑠, Fig. 16 displays the profiles of surface 

concentration ℎ(0)  against parameter 𝐾ℎ. It is 

evident that when 𝐾𝑠 increases, the 

concentration at the surface drops. It's 

interesting to note that for all used values of 𝐾𝑠, 
ℎ(0)  varies linearly with 𝐾ℎ . Fig. 17 shows the 

variation in surface concentration ℎ(0)  with 

Schmidt number Sc  for different values of 𝐾𝑠. 

The surface concentration ℎ(0)  expands 

nonlinearly with an increase in Schmidt 

number 𝑆𝑐, and this growth becomes more 

pronounced when larger values of 𝐾𝑠 are taken 

into consideration. 
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     Figure 9. Curves of velocity f'(η) for different 

values of Deborah number β 

 

 
 Figure 12. Curves of concentration h(η)  for  

                 different values of Deborah number β 

 
         Figure 10. Curves of velocity r(η) for different    

values of Deborah number β 

 

 
Figure 13. Curves of concentrationh(η)   

                for different values of Sc  

 
    Figure 11. Curves of concentration h(η)  for  

        different values of rotation strength parameter λ 

 

 
Figure 14. Curves of concentrationh(η)  for  

                 different values of Kh 
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         Figure 15. Curves of concentration h(η) for                   

different values of Ks 

 

 
 Figure 17. Profiles of surface concentration h(0) for  

different values of Ks against the Schmidt number Sc 

 
Figure 16. Profiles of surface concentration 

h(0) for different values of Ksagainst 𝐾ℎ 

  

 

 

Conclusions  

To understand the rotating flow of electrical 

MHD Maxwell fluid over a stretching sheet, the 

HHR model is explored. On the BLF of electrical 

MHD Maxwell fluid across a stretched surface, 

we have examined the effects of an electric field, 

a magnetic field, the Deborah number, and the 

Rotation strength parameter. The controlling 

PDEs were converted into the dimensionless 

ODEs by use of similarity transformations. We 

have used OHAM to analytically solve the 

transformed equations. In-depth arguments are 

made for the graphical representations of our 

findings on the impact of important parameters on 

the concentration and velocity profiles. 

Following are a few of the specific conclusions 

that may be drawn from the study.  

• The semi-analytic method OHAM is very 

effective, simple, fast convergent and is 

independent of the assumption of the 

unrealistic small parameters. 

• Using the convergence parameters, the series 

solution may be easily controlled and 

modified. 

• The velocity of fluid flow is increased by an 

electric field with a higher value. electric 

field with a higher value. 

• Increasing M declines the velocity field 



Effects of Homogeneous-Heterogeneous Reactions in Flow of Electrical MHD Non-Newtonian Fluid with a 

Rotating Frame:                                                                                                                                                     566 
 

  Gossaye Aliy (2024) 

initially and after some time it becomes 

increasing significantly in the presence of 

electric field. 

• The rotation-strength parameter λ has a 

delaying impact on the velocity profiles. 

Also, concentration BL expands when fluid 

is exposed to a higher rotation rate. 

• With growth in fluid relaxation time, BL 

becomes thinner while an expansion in 

concentration BL is portrayed. 

• Concentration profile declines with growing 

strengths of HHR. 

• From the graphs of r(η) againstη, one can 

observe that counter-clockwise rotation sets 

up the fluid flow only in the negative y-

direction. 

• Surface concentration h(0)  rises non-

linearly for the growing values of Schmidt 

number𝑆𝑐. 
 

Abbreviations 

BC  :  Boundary Condition 

BL  :   Boundary layer 

BLF:   Boundary layer flow 

BLP:   Boundary layer problem 

BLT:   Boundary layer thickness 

FF   :   Fluid Flow 

HT  :  Heat Transfer 

HHR :   Homogeneous-heterogeneous reaction 

MHD :   Magneto-hydrodynamic 
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